Abstract

Micrometer-sized objects with flat shapes have been oriented in optical tweezers formed by polarized light. The orienting torque originates from the anisotropic scattering of polarized light by the trapped particle. We investigated this effect experimentally on objects produced by photopolymerization. We determined and characterized the orienting torque acting on these particles, and the results were interpreted by model calculations. By manipulating particles with appropriately shaped optical tweezers, we can fully control the position of the particle in the trap. The torque exerted on the object can be measured and controlled. This angular trapping effect offers a useful extension of optical tweezer applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Applications of laser-radiation pressure,�?? Science 210, 1081-1088 (1980).
    [CrossRef] [PubMed]
  2. S. Smith, Y. Cui, and C. Bustamante, �??Overstretching B-DNA: the elastic response of individual doublestranded and single-stranded DNA molecules,�?? Science 271, 795-799 (1996).
    [CrossRef] [PubMed]
  3. R. C. Gauthier, �??Theoretical investigation of the optical trapping force and torque on cylindrical microobjects,�?? J. Opt. Soc. Am. B 14, 3323-3333 (1997).
    [CrossRef]
  4. R. C. Gauthier, M. Ashman, and C. P. Grover, �??Experimental confirmation of the optical-trapping properties of cylindrical objects,�?? Appl. Opt. 38, 4861-4869 (1999).
    [CrossRef]
  5. Z. Cheng, P. M. Chaikin, and T. G. Mason, �??Light streak tracking of optically trapped thin microdisks,�?? Phys. Rev. Lett. 89, 108303 (2002).
    [CrossRef] [PubMed]
  6. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and N. R. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348-350 (1998).
    [CrossRef]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H . Rubinsztein-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826-829 (1995).
    [CrossRef] [PubMed]
  8. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, �??Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,�?? Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  9. A. Yamamoto and I. Yamaguchi, �??Measurement and control of optically induced rotation of anisotropic shaped particles,�?? Jpn. J. Appl. Phys. 34, 3104-3108 (1995).
    [CrossRef]
  10. P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  11. P. Galajda and P. Ormos, �??Rotors produced and driven in laser tweezers with reversed direction of rotation,�?? Appl. Phys. Lett. 80, 4653-4655 (2002).
    [CrossRef]
  12. P. Galajda and P. Ormos, �??Rotation of microscopic propellers in laser tweezers,�?? J. Opt. B. 4, S78-S81 (2002).
    [CrossRef]
  13. A. T. O�??Neil and M. J. Padgett, �??Rotational control within optical tweezers by use of a rotating aperture,�?? Opt. Lett. 27 743-745 (2002
    [CrossRef]
  14. T. Wohland, A. Rosin, and E. H. K. Stelzer, �??Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,�?? Optik 102, 181-190 (1996).
  15. D. B. Bonin, B. Kourmanov, and T. G. Walker, �??Light torque nanocontrol, nanomotors and nanorockers,�?? Opt. Express 10, 984-989 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-19-984">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-19-984</a>.
    [CrossRef] [PubMed]
  16. S. Maruo, O. Nakamura, and S. Kawata, �??Three-dimensional microfabrication with two-photon-absorbed photopolymerization,�?? Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  17. Optical tweezers lab at the Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary (P. Galajda, 2002), <a href="http://www.szbk.u-szeged.hu/~gpeter/polrot/polrot.htm">http://www.szbk.u-szeged.hu/~gpeter/polrot/polrot.htm</a>.
  18. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, �??Calculation and optical measurement of laser trapping forces on non-spherical particles,�?? J. Quant. Spectrosc. Radiat. Transfer 70, 627-637 (2001).
    [CrossRef]
  19. R. Yasuda, H. Noji, K. Kinoshita Jr., and M. Yoshida, �??F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps,�?? Cell 93, 1117-1124 (1998).
    [CrossRef] [PubMed]
  20. J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, �??Stretched and overwound DNA forms a Pauling-like structure with exposed bases,�?? Proc. Natl. Acad. Sci. USA 95, 1452-1457 (1998).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

P. Galajda and P. Ormos, �??Rotors produced and driven in laser tweezers with reversed direction of rotation,�?? Appl. Phys. Lett. 80, 4653-4655 (2002).
[CrossRef]

Cell (1)

R. Yasuda, H. Noji, K. Kinoshita Jr., and M. Yoshida, �??F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps,�?? Cell 93, 1117-1124 (1998).
[CrossRef] [PubMed]

J. Opt. B (1)

P. Galajda and P. Ormos, �??Rotation of microscopic propellers in laser tweezers,�?? J. Opt. B. 4, S78-S81 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, �??Calculation and optical measurement of laser trapping forces on non-spherical particles,�?? J. Quant. Spectrosc. Radiat. Transfer 70, 627-637 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yamamoto and I. Yamaguchi, �??Measurement and control of optically induced rotation of anisotropic shaped particles,�?? Jpn. J. Appl. Phys. 34, 3104-3108 (1995).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and N. R. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348-350 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Optik (1)

T. Wohland, A. Rosin, and E. H. K. Stelzer, �??Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,�?? Optik 102, 181-190 (1996).

Phys. Rev. Lett. (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H . Rubinsztein-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

Z. Cheng, P. M. Chaikin, and T. G. Mason, �??Light streak tracking of optically trapped thin microdisks,�?? Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, �??Stretched and overwound DNA forms a Pauling-like structure with exposed bases,�?? Proc. Natl. Acad. Sci. USA 95, 1452-1457 (1998).
[CrossRef]

Science (2)

A. Ashkin, �??Applications of laser-radiation pressure,�?? Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

S. Smith, Y. Cui, and C. Bustamante, �??Overstretching B-DNA: the elastic response of individual doublestranded and single-stranded DNA molecules,�?? Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Other (1)

Optical tweezers lab at the Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary (P. Galajda, 2002), <a href="http://www.szbk.u-szeged.hu/~gpeter/polrot/polrot.htm">http://www.szbk.u-szeged.hu/~gpeter/polrot/polrot.htm</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cross-shaped test object to study angular trapping in optical tweezers formed by linearly polarized light: a and c, drawing of the object from two different views; b and d, photographs of the produced objects viewed from respective directions. The scale bar is 3 µm long.

Fig. 2.
Fig. 2.

Cross-shaped test object shown in Fig. 1 held in the optical tweezers formed by linearly polarized light. The cross is positioned with the longer rod along the optical axis: the subfigures show different angular trapped positions. The scale bar is 3 µm long. A corresponding video clip can be downloaded form the webpage of our laboratory [17].

Fig. 3.
Fig. 3.

Phase delay of the rotating particle to the rotating polarization as a function of the rotation rate.

Fig. 4.
Fig. 4.

Torque exerted by the polarized light upon the trapped body as a function of the angle between the polarization plane and the long axis of the trapped flat object. ■, measured data; —, model calculation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = 4 πvl { 0.5 C ln [ Rvρ ( 4 η ) ] } .
r = sin ( α β ) sin ( α + β ) , t = 2 sin β cos α sin ( α + β ) ,
r = tan ( α β ) tan ( α + β ) , t = 2 sin β cos α [ sin ( α + β ) cos ( α β ) ] ,
P = S c .
M = r × Δ P .

Metrics