Abstract

A theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, M. Leppilhalme, �??Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer�??s star product,�?? Opt. Commun. 198, 265 (2001).
    [CrossRef]
  2. P. Villeneuve ,D. Abrams, S. Fan and J.D. Joannopoulos, �??Single mode waveguide microcavity for fast optical switching,�?? Opt. Lett. 21, 2017 (1996).
    [CrossRef] [PubMed]
  3. P. Tran, �??Optical switching with a nonlinear photonic crystal: a numerical study,�?? Opt. Lett. 21, 1138 (1996)
    [CrossRef] [PubMed]
  4. J. Broeng, D. Mogilevstev, S. E. Barkou and A. Bjarklev, �??Photonic crystal Fibers: A New Class of Optical Waveguides,�?? Opt. Fiber Tech. 5, 305 (1999).
    [CrossRef]
  5. R. W. Ziolkowski and T. Liang, �??Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing,�?? Opt. Lett. 22, 1033 (1997).
    [CrossRef] [PubMed]
  6. T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, �??Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,�?? Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22-28. January (2000).
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, �??Photonic crystals: Molding the Flow of Light,�?? Princeton University Press (1995).
  8. L. Sireto, G. Coppola, G. Abatte, G. C. Righini and J. M. Otón, �??Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,�?? Opt. Eng. 41, 2890 (2002).
    [CrossRef]
  9. E. Yablonovitch, �??Photonic band-gap structures,�?? J. Opt. Soc. Am. A 10, 283 (1993).
    [CrossRef]
  10. F. J. Arregui, I. R. Matías, K. L. Cooper, R. O. Claus, �??Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,�?? Opt. Lett. 26, 131 (2001).
    [CrossRef]
  11. F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan and R.O. Claus �??Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,�?? Opt Lett. 24, 596 (1999).
    [CrossRef]
  12. F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, K. L. Cooper, �??Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,�?? IEEE Phot. Tech. Lett. 13, 1319 (2001).
    [CrossRef]
  13. I. R. Matias, I. Del Villar, F. J. Arregui and R. O. Claus, �??Comparative study of the modeling of 3D photonic band gap structures,�?? J. Opt. Soc. Am A. In press

IEEE Phot. Tech. Lett. (1)

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, K. L. Cooper, �??Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,�?? IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

J. Opt. Soc. Am A (1)

I. R. Matias, I. Del Villar, F. J. Arregui and R. O. Claus, �??Comparative study of the modeling of 3D photonic band gap structures,�?? J. Opt. Soc. Am A. In press

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, M. Leppilhalme, �??Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer�??s star product,�?? Opt. Commun. 198, 265 (2001).
[CrossRef]

Opt. Eng. (1)

L. Sireto, G. Coppola, G. Abatte, G. C. Righini and J. M. Otón, �??Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,�?? Opt. Eng. 41, 2890 (2002).
[CrossRef]

Opt. Fiber Tech. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou and A. Bjarklev, �??Photonic crystal Fibers: A New Class of Optical Waveguides,�?? Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, �??Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,�?? Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22-28. January (2000).

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, �??Photonic crystals: Molding the Flow of Light,�?? Princeton University Press (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Structure of the 1D PBG wavelength filter consisting of 2 Bragg mirrors of 30 layers and a cavity (defect)

Fig. 2.
Fig. 2.

1D-PBG structure of 61 layers with a defect

Fig. 3.
Fig. 3.

Transmitted power of the quarter-wave reflector with the introduction of a defect in the middle

Fig. 4.
Fig. 4.

Transmitted power of the quarter-wave reflector with the introduction of a defect in the middle considering both fibers infinite or finite in length

Fig. 5.
Fig. 5.

Defect states in the band gap three different thicknesses of the liquid crystal layer. A defect state leaves the band gap.

Fig. 6.
Fig. 6.

Defect states in the band gap for three different thicknesses of the liquid crystal layer. A new defect state enters the band gap

Fig. 7.
Fig. 7.

QWR transmitted power plot for four different states of the liquid crystal

Fig. 8.
Fig. 8.

QWR transmitted power for five refractive indexes in the defect. Number of layers 92

Metrics