Abstract

A theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
    [CrossRef]
  2. P. Villeneuve, D. Abrams, S. Fan, and J.D. Joannopoulos, “Single mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017 (1996).
    [CrossRef] [PubMed]
  3. P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21, 1138 (1996).
    [CrossRef] [PubMed]
  4. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
    [CrossRef]
  5. R. W. Ziolkowski and T. Liang, “Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing,” Opt. Lett. 22, 1033 (1997).
    [CrossRef] [PubMed]
  6. T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic crystals: Molding the Flow of Light,” Princeton University Press (1995).
  8. L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
    [CrossRef]
  9. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. A 10, 283 (1993).
    [CrossRef]
  10. F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,” Opt. Lett. 26, 131 (2001).
    [CrossRef]
  11. F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
    [CrossRef]
  12. F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
    [CrossRef]
  13. I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

2002 (1)

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

2001 (3)

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,” Opt. Lett. 26, 131 (2001).
[CrossRef]

1999 (2)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

1997 (1)

1996 (2)

1993 (1)

Aalto, T.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Abatte, G.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Abrams, D.

Arregui, F. J.

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,” Opt. Lett. 26, 131 (2001).
[CrossRef]

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

Arregui, F.J.

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Claus, R. O.

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,” Opt. Lett. 26, 131 (2001).
[CrossRef]

I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

Claus, R.O.

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Cooper, K. L.

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process,” Opt. Lett. 26, 131 (2001).
[CrossRef]

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

Coppola, G.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Del Villar, I.

I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

Dickerson, B.

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

Fan, S.

George, T.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Greenwald, A. C.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Heimala, P.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

James, T. D.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic crystals: Molding the Flow of Light,” Princeton University Press (1995).

Joannopoulos, J.D.

Johnson, E. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Jones, E. W.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Kuitinen, M.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Lenahan, K.M.

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Leppilhalme, M.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Liang, T.

Liu, Y.

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Matias, I. R.

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

Matias, I.R.

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Matías, I. R.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic crystals: Molding the Flow of Light,” Princeton University Press (1995).

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Otón, J. M.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Righini, G. C.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Sireto, L.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Stevenson, W. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Tervo, J.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Tran, P.

Turunen, J.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Vahimaa, P.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Villeneuve, P.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic crystals: Molding the Flow of Light,” Princeton University Press (1995).

Wollam, J. A.

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Yablonovitch, E.

Ziolkowski, R. W.

IEEE Phot. Tech. Lett. (1)

F. J. Arregui, B. Dickerson, R. O. Claus, I. R. Matias, and K. L. Cooper, “Polimeric thin films of controlled complex refractive index formed by the Electrostatic Self-Assembled Monolayer Process,” IEEE Phot. Tech. Lett. 13, 1319 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt Lett. (1)

F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, and R.O. Claus “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the Ionic Self Assembly Monolayer Process,” Opt Lett. 24, 596 (1999).
[CrossRef]

Opt. Comm. (1)

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Comm. 198, 265 (2001).
[CrossRef]

Opt. Engineering (1)

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Engineering 41, 2890 (2002).
[CrossRef]

Opt. Fiber Tech. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides.” Opt. Fiber Tech. 5, 305 (1999).
[CrossRef]

Opt. Lett. (4)

Other (3)

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic crystals: Molding the Flow of Light,” Princeton University Press (1995).

I. R. Matias, I. Del Villar, F. J. Arregui, and R. O. Claus, “Comparative study of the modeling of 3D photonic band gap structures,” J. Opt. Soc. Am A. In press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Structure of the 1D PBG wavelength filter consisting of 2 Bragg mirrors of 30 layers and a cavity (defect)

Fig. 2.
Fig. 2.

1D-PBG structure of 61 layers with a defect

Fig. 3.
Fig. 3.

Transmitted power of the quarter-wave reflector with the introduction of a defect in the middle

Fig. 4.
Fig. 4.

Transmitted power of the quarter-wave reflector with the introduction of a defect in the middle considering both fibers infinite or finite in length

Fig. 5.
Fig. 5.

Defect states in the band gap three different thicknesses of the liquid crystal layer. A defect state leaves the band gap.

Fig. 6.
Fig. 6.

Defect states in the band gap for three different thicknesses of the liquid crystal layer. A new defect state enters the band gap

Fig. 7.
Fig. 7.

QWR transmitted power plot for four different states of the liquid crystal

Fig. 8.
Fig. 8.

QWR transmitted power for five refractive indexes in the defect. Number of layers 92

Metrics