Abstract

We demonstrate fabrication of periodically poled lithium niobate samples by electric field poling, after patterning by interference lithography. Furthermore we investigate the poling process at an overpoling regime which caused the appearance of submicron dot domains very similar to those induced by backswitch but different in nature. We show the possibility for realizing submicron-scaled three-dimensional domain patterns that could be applied to the construction of photonic crystals and in nonlinear optics. We show that high etch-rate applied to such structures allows to obtain pyramidal-like submicron relief structures which in principle could find application for waveguide construction in photonic bandgap devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Webjörn, F. Laurell, G. Arvidsson, �??Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,�?? IEEE J. Lightwave Technol. 7, 1597-1600 (1989).
    [CrossRef]
  2. E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, �??Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,�?? Electron. Lett. 25, 731-732 (1989).
    [CrossRef]
  3. D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, �??An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,�?? IEEE J. Lightwave Technol. 12, 1092-1098 (1994).
    [CrossRef]
  4. W.K. Burns, W. McElhanon, and L. Goldberg, �??Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,�?? IEEE Photon. Technol. Lett. 6, 252-254 (1994).
    [CrossRef]
  5. E.J. Lim, M.M. Fejer and R.L. Byer, �??Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,�?? Electron. Lett. 25, 174-175 (1989).
    [CrossRef]
  6. M. Yamada and K. Kishima, �??Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,�?? Electron. Lett. 27, 828-829 (1991).
    [CrossRef]
  7. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  8. J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,�?? Electron. Lett. 30, 894-895 (1994).
    [CrossRef]
  9. V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Intracavity second harmonic generation of 0.532 m in bulk periodically poled lithium niobate,�?? Opt. Commun. 116, 159-162 (1995).
    [CrossRef]
  10. G.D. Miller, R.G. Batchko, M.M. Fejer, R.L. Byer, �??Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,�?? SPIE 2700, 34-36 (1996).
    [CrossRef]
  11. M.J . Missey, S. Russell, V. Dominic, R. G. Batchko, K. L. Schepler, �??Real-time visualization of domain formation in periodically poled lithium niobate,�?? Opt. Express 6, 186-195 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186</a>
    [CrossRef] [PubMed]
  12. M. Reich, F. Korte, C. Gallnich, H. Welling and A. Tünnermann, �??Electrode geometries for periodic poling of ferroelectric materials,�?? Opt. Lett. 23, 1817-1819 (1998).
    [CrossRef]
  13. G.D.Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, �??42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,�?? Opt. Lett. 22, 1834-1836 (1997).
    [CrossRef]
  14. R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, �??Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,�?? Appl. Phys. Lett. 75, 1673-1675 (1999).
    [CrossRef]
  15. P.T. Brown, G.W. Ross, R.W. Eason and A.R. Pogosyan, �??Control of domain structures in lithium tantalite using interferometric optical patterning,�?? Opt. Commun. 163, 310-316 (1990).
    [CrossRef]
  16. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, �??Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,�?? J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  17. R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, L. Erman, �??Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,�?? Opt. Lett. 24, 1293-1295 (1999).
    [CrossRef]
  18. I.E.Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, G. Cook, �??Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,�?? Materials Lett. 37, 246-254 (1998).
    [CrossRef]
  19. P.T. Brown, S. Mailis, I. Zergioti, R.W. Eason, �??Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,�?? Opt. Mat. 20, 125-134 (2002).
    [CrossRef]
  20. I.E. Barry, �??Microstructuring of lithium niobate,�?? PhD research thesis, Optoelectronics Research Centre, Faculty of Science, University of Southampton (2000).
  21. J.P. Spallas, A.M. Hawryluk, and D.R. Kania, �??Field emitter array mask patterning using laser interference lithography,�?? J. Vac. Sci. Technol. B 13, 1973-1978 (1995).
    [CrossRef]
  22. M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, �??Optically matched trilevel resist process for nanostructure fabrication,�?? J. Vac. Sci. Technol. B 13, 3007-3011 (1995).
    [CrossRef]
  23. J.A. Mitchell, �??Fabrication and characterization of quasi-phase-matched nonlinear optical devices,�?? degree thesis, The Pennsylvania State University (1996).
  24. S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, �??Investigation on overpoled Lithium Niobate patterned crystal,�?? ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy 25-31 August 2002, Technical Digest, Part 2, 735-736.
  25. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000).
    [CrossRef] [PubMed]
  26. A.C. Busacca, V. Apostolopoulos, R.W. Eason, S. Mailis, �??Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,�?? Proc. in CLEO/QELS (Optical Society of America, Washington, D.C., 2002) pp. 642-643.

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, �??Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,�?? Appl. Phys. Lett. 75, 1673-1675 (1999).
[CrossRef]

CLEO/QELS

A.C. Busacca, V. Apostolopoulos, R.W. Eason, S. Mailis, �??Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,�?? Proc. in CLEO/QELS (Optical Society of America, Washington, D.C., 2002) pp. 642-643.

Electron. Lett.

J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,�?? Electron. Lett. 30, 894-895 (1994).
[CrossRef]

E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, �??Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,�?? Electron. Lett. 25, 731-732 (1989).
[CrossRef]

E.J. Lim, M.M. Fejer and R.L. Byer, �??Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,�?? Electron. Lett. 25, 174-175 (1989).
[CrossRef]

M. Yamada and K. Kishima, �??Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,�?? Electron. Lett. 27, 828-829 (1991).
[CrossRef]

IEEE J. Lightwave Technol.

D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, �??An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,�?? IEEE J. Lightwave Technol. 12, 1092-1098 (1994).
[CrossRef]

J. Webjörn, F. Laurell, G. Arvidsson, �??Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,�?? IEEE J. Lightwave Technol. 7, 1597-1600 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

W.K. Burns, W. McElhanon, and L. Goldberg, �??Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,�?? IEEE Photon. Technol. Lett. 6, 252-254 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

J.P. Spallas, A.M. Hawryluk, and D.R. Kania, �??Field emitter array mask patterning using laser interference lithography,�?? J. Vac. Sci. Technol. B 13, 1973-1978 (1995).
[CrossRef]

M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, �??Optically matched trilevel resist process for nanostructure fabrication,�?? J. Vac. Sci. Technol. B 13, 3007-3011 (1995).
[CrossRef]

Materials Lett.

I.E.Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, G. Cook, �??Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,�?? Materials Lett. 37, 246-254 (1998).
[CrossRef]

Opt. Commun.

P.T. Brown, G.W. Ross, R.W. Eason and A.R. Pogosyan, �??Control of domain structures in lithium tantalite using interferometric optical patterning,�?? Opt. Commun. 163, 310-316 (1990).
[CrossRef]

V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Intracavity second harmonic generation of 0.532 m in bulk periodically poled lithium niobate,�?? Opt. Commun. 116, 159-162 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mat.

P.T. Brown, S. Mailis, I. Zergioti, R.W. Eason, �??Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,�?? Opt. Mat. 20, 125-134 (2002).
[CrossRef]

Phys. Rev. Lett.

N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Proc. SPIE

G.D. Miller, R.G. Batchko, M.M. Fejer, R.L. Byer, �??Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,�?? SPIE 2700, 34-36 (1996).
[CrossRef]

Other

I.E. Barry, �??Microstructuring of lithium niobate,�?? PhD research thesis, Optoelectronics Research Centre, Faculty of Science, University of Southampton (2000).

J.A. Mitchell, �??Fabrication and characterization of quasi-phase-matched nonlinear optical devices,�?? degree thesis, The Pennsylvania State University (1996).

S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, �??Investigation on overpoled Lithium Niobate patterned crystal,�?? ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy 25-31 August 2002, Technical Digest, Part 2, 735-736.

Supplementary Material (3)

» Media 1: MOV (135 KB)     
» Media 2: MOV (145 KB)     
» Media 3: MOV (1561 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Michelson interferometric set-up used to generate the 30µm spaced fringes to be printed on photoresist-coated LN samples. The coherent source is an He-Cd laser emitting at 441.6nm with an output power of 65mW.

Fig. 2.
Fig. 2.

Cross-sectional view of the electrode configuration for electric field poling. The photoresist grating acts as an insulating barrier that lowers the electric field applied through the liquid electrolyte below the coercive field needed to reverse the spontaneous polarization.

Fig. 3.
Fig. 3.

Electrical circuit used to pole LN samples. An High Voltage Amplifier (HVA - 2000x) with a series resistor RS = 50MΩ produces +12kV voltage by using a conventional Signal Generator (SG). A diode rectifier D was connected to the output of the HVA to prevent flowing of backswitch current.

Fig. 4.
Fig. 4.

Optical micrograph of the domain structure with a period of 30µm obtained for a LN sample patterned by IL and revealed by wet etching of 60minutes in a HF:HNO3=1:2 acid mixture. This image is taken in the central area of the pattern and it is representative of the whole pattern obtained in a region of about 20mm in diameter.

Fig. 5.
Fig. 5.

Surface profilometric measurement of the patterned side of the periodically poled and 60minutes etched LN sample shown in Fig. 4. The measurement was performed along the x main axis of the crystal.

Fig. 6. (a)
Fig. 6. (a)

optical micrograph of the aligned dot domains structure observed on the z+ face after electric field overpoling, the structure was revealed by an etching process of 60 minutes in a HF:HNO3=1:2 acid mixture at room temperature; (b) scanning electron microscope image of the dot domains. The crystal sample was periodically patterned by IL at 30µm.

Fig. 7.
Fig. 7.

Optical micrograph of the dot domains in a peripheral region of the pattern. This image clearly shows that the merging of two adjacent domains, due to overpoling, leads to the formation of the dot domains.

Fig. 8.
Fig. 8.

Movie (135 KB) schematically showing the overpoling merging effect under the photoresist strips which leads to the formation of the dot domains in Fig. 6.

Fig. 9. (a)
Fig. 9. (a)

Magnified optical micrograph of the dot domains observed on the z+ face and (b) the corresponding structure observed on the opposite side.

Fig. 10. (a)
Fig. 10. (a)

Optical micrograph of the square array of photoresist dots printed on a lithium niobate sample by interference lithography; (b) optical micrograph of the dot domains obtained by overpoling such patterned lithium niobate sample and revealed by wet etching of 30 minutes; (c)-(d) two different magnified views of the dot domains taken by scanning electron microscope.

Fig. 11.
Fig. 11.

Waveforms of the poling current, the poling voltage and the input voltage acquired by the oscilloscope during the overpoling of a LN sample patterned by the IL dots array pattern with a period of 23µm and using the electrical circuit shown in Fig. 3. The overpoling process took about 3.5s.

Fig. 12.
Fig. 12.

Movie (145 KB) which shows schematically the overpoling merging effect under the photoresist dots which leads to the formation of the dot domains shown in Fig. 10(b) and corresponding to a LN sample patterned by 2D square array of photoresist dots.

Fig. 13.
Fig. 13.

(a) (b) Optical micrographs of the 3D domain patterned samples A and B, etched at 100°C for 45 minutes and for 4 hours, respectively; (c) (d) two different SEM images of the pyramidal-like structures revealed by the 4 hours etching process on the sample B.

Fig. 14.
Fig. 14.

Schematic sectional view of the etched samples A and B. The z- face is flat showing the 3D feature of the obtained crystal structures.

Fig. 15.
Fig. 15.

Movie (1.56 MB) which shows the pyramidal-like morphology of the structures revealed on the 3D domain patterned sample A by 45 minutes etching process at 100°C.

Metrics