Abstract

Dynamic speckle multiplexing scheme in volume holographic data storage is proposed, since it offers a novel multiplexing geometry, and could be combined with other schemes to make the full use of the dynamic ranges. In this scheme, a random diffuser is added in the original reference path of the classical 90° setup. In this paper, we analyzed the propagation of the speckle field in the holographic system and established the related theoretical model based on the dynamic speckle auto-correlation function and diffraction theory. We successfully realized the dynamic speckle multiplexing in our experimental system and reached a storage density of 4.6 Gigapixels/cm3 based on the DPL laser source.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Volume hologram scheme using optical fiber for spatial multiplexing

Yong Hoon Kang, Ki Hyun Kim, and Byoungho Lee
Opt. Lett. 22(10) 739-741 (1997)

Enhancement of the wavelength selectivity of a volume hologram by use of multimode optical fiber referencing

Ki Hyun Kim, Hong-Seok Lee, and Byoungho Lee
Opt. Lett. 23(15) 1224-1225 (1998)

Multilayer volume holographic optical memory

Vladimir Markov, James Millerd, James Trolinger, Mark Norrie, John Downie, and Dogan Timucin
Opt. Lett. 24(4) 265-267 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
    [Crossref]
  2. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992)
    [Crossref] [PubMed]
  3. F. H. Mok, “Angule-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993)
    [Crossref] [PubMed]
  4. D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, “Holographic stroagfe using shift multiplexing,” Opt. Lett. 20, 782–784 (1995)
    [Crossref] [PubMed]
  5. J. E. Ford, Y. Fainman, and S.H. Lee, “Array interconnection by phase-coded optical correlation,” Opt. Lett. 15, 1088–1090 (1990)
    [Crossref] [PubMed]
  6. A. Darsky and V. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
    [Crossref]
  7. A.M. Darskii and V.B Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
    [Crossref]
  8. Qingsheng He, Guodong Liu, Xiaochun Li, Jiangang Wang, Minxian Wu, and Guofan Jin, “Suppression of the influence of photovoltaic dc field on volume hologram in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002)
    [Crossref] [PubMed]
  9. V. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997)
  10. Jinnan Wang, Qingsheng He, and Dong Huang, “High density Volume holography data storage based on Speckle Angular Multiplexing,” OSA Annual Meeting, (2002)
  11. A.M. Darskii and V. Markov, “Shift selectivity of the holograms with a reference speckle wave,” Opt. Spectroscopy 65, 392–395 (1988).
  12. Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
    [Crossref]

2002 (1)

2000 (1)

Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
[Crossref]

1997 (1)

V. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997)

1995 (1)

1994 (1)

J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
[Crossref]

1993 (1)

1992 (2)

A.M. Darskii and V.B Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992)
[Crossref] [PubMed]

1991 (1)

A. Darsky and V. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

1990 (1)

1988 (1)

A.M. Darskii and V. Markov, “Shift selectivity of the holograms with a reference speckle wave,” Opt. Spectroscopy 65, 392–395 (1988).

Barbastathis, G.

Bashaw, M. C.

J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
[Crossref]

Darskii, A.M.

A.M. Darskii and V.B Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

A.M. Darskii and V. Markov, “Shift selectivity of the holograms with a reference speckle wave,” Opt. Spectroscopy 65, 392–395 (1988).

Darsky, A.

A. Darsky and V. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

Fainman, Y.

Ford, J. E.

He, Qingsheng

Qingsheng He, Guodong Liu, Xiaochun Li, Jiangang Wang, Minxian Wu, and Guofan Jin, “Suppression of the influence of photovoltaic dc field on volume hologram in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002)
[Crossref] [PubMed]

Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
[Crossref]

Jinnan Wang, Qingsheng He, and Dong Huang, “High density Volume holography data storage based on Speckle Angular Multiplexing,” OSA Annual Meeting, (2002)

heanue, J. F.

J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
[Crossref]

Hesselink, L.

J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
[Crossref]

Huang, Dong

Jinnan Wang, Qingsheng He, and Dong Huang, “High density Volume holography data storage based on Speckle Angular Multiplexing,” OSA Annual Meeting, (2002)

Jin, Guofan

Qingsheng He, Guodong Liu, Xiaochun Li, Jiangang Wang, Minxian Wu, and Guofan Jin, “Suppression of the influence of photovoltaic dc field on volume hologram in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002)
[Crossref] [PubMed]

Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
[Crossref]

Lee, S.H.

Levene, M.

Leyva, V.

Li, Xiaochun

Liu, Guodong

Markov, V.

V. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997)

A. Darsky and V. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

A.M. Darskii and V. Markov, “Shift selectivity of the holograms with a reference speckle wave,” Opt. Spectroscopy 65, 392–395 (1988).

Markov, V.B

A.M. Darskii and V.B Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

Mok, F. H.

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Wang, Jiangang

Wang, Jinnan

Jinnan Wang, Qingsheng He, and Dong Huang, “High density Volume holography data storage based on Speckle Angular Multiplexing,” OSA Annual Meeting, (2002)

Wu, Minxian

Yariv, A.

zhang, Peikun

Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
[Crossref]

Appl. Opt. (1)

J. Imaging Sci. Technol. (1)

V. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997)

Opt. Lett. (4)

Opt. Spectroscopy (1)

A.M. Darskii and V. Markov, “Shift selectivity of the holograms with a reference speckle wave,” Opt. Spectroscopy 65, 392–395 (1988).

Proc. SPIE (2)

A. Darsky and V. Markov, “Information capacity of holograms with reference speckle wave,” Proc. SPIE 1509, 36–46 (1991)
[Crossref]

A.M. Darskii and V.B Markov, “Some properties of 3D holograms with a reference speckle-wave and their application to information storage,” Proc. SPIE 1600, 318–332 (1992)
[Crossref]

Proceedings of SPIE (1)

Peikun zhang, Qingsheng He, and Guofan Jin, “A novel speckle angular-shift multiplexing for high-density holographic storage,” Proceedings of SPIE 4081, 236–241 (2000)
[Crossref]

Science (1)

J. F. heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and rettieval of digital date,” Science 256, 749–752 (1994)
[Crossref]

Other (1)

Jinnan Wang, Qingsheng He, and Dong Huang, “High density Volume holography data storage based on Speckle Angular Multiplexing,” OSA Annual Meeting, (2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Geometry of the hologram recording by signal plane wave S0(r) and dynamical speckle reference wave RW(r). Here T is the thickness of volume hologram. DL is the distance from the hologram front surface to random-phase diffuser. Δ is the shift of the diffuser.

Fig. 2.
Fig. 2.

Calculated dependence of the normalized diffratcted beam intensity IDNy) on shift Δy at reconstruction with different speckle sizes δ.

Fig. 3.
Fig. 3.

The shifting selectivity ΔyHW as a function of the distance DL from the hologram front surface to random phase diffuser

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ ε ( r ) E 2 = S 0 ( r ) + R w ( r ) 2 S 0 ( r ) R W * ( r )
S ( r ) = k 0 2 δ ε ( r ) R R ( r ) G ( r , r ) d V
S ( r ) Γ ( r , r ) d V
Γ ( r , r ) = R W * ( r ) R R ( r ) = π ω 0 2 2 2 ω ( z 0 ) λ 2 z 2 exp ( Δ y 2 2 ω 2 ( z 0 ) )
× exp ( π 2 ω 2 ( z 0 ) Δ y 2 2 λ 2 z 2 [ 1 + z ρ ( z 0 ) ] 2 ) × exp ( i 2 π Δ y λz y )
I DN ( Δ y ) = exp ( Δ y 2 ω 2 ( z 0 ) ) V 1 z 2 exp ( π 2 ω 2 ( z 0 ) Δ y 2 2 λ 2 z 2 [ 1 + z ρ ( z 0 ) ] 2 ) exp ( i 2 π Δ y λz y ) d x d y dz 2 V 1 z 2 d x d y dz 2
S ( δ θ A , q ) = exp ( k 0 sin θ s ) t 0 2 0 T 1 z δ θ A exp { i k 0 δ θ A d L ( z δ θ A + 2 y ) } J 1 ( k 0 ϕ L δ θ A 2 d L z ) dz
I D ( δ θ A ) I D max = 1 π ( 4 d L k 0 D H ϕ L T ) 0 q 2 D H 2 4 S δ θ A q ¯ 2 d 2 q

Metrics