Abstract

In this paper we review recent results describing the generation of optical modes within waveguides based on coherent scattering from artificially structured interfaces. The generation of optical waveguide propagation similar to free space propagation enables possible solutions to controlling and shaping optical field generation in free space using coherent scattering of multiple sources. It is shown that the controlled fabrication of such sources can be done simply with air-material structured waveguides such as air-silica structured fibres. Further, the technique of coherent superposition is well known in Fresnel optics, exploiting zone plates to correct the necessary phase adjustments for a desired lens performance. Similarly, in waveguide form this allows fine control of the interference process resulting in the desired mode field and its properties within the waveguide, at the end of the waveguide in the near field regime and well beyond the waveguide into the far field. A factor that can contribute significantly to the coherent scattering within the Fresnel waveguide is resonant-like scattering inside the low index regions since the critical angle of propagation can be very small, increasing Fresnel reflections between interfaces. The results presented here open up a range of hitherto unexplored possibilities in controlling and shaping at first glance disparate phenomena, including free space diffraction.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Ojeda-Castenada, C. Gomez-Reino, Selected Papers on Zone Plates; (SPIE Milestone Series 1996), Vol. MS 128
  2. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas, (Artech House 2000)
  3. J. Canning, �??Diffraction-Free Mode Generation and Propagation in Optical Waveguides,�?? Opt. Commun. 207, 35-39 (2002)
    [CrossRef]
  4. M.V. Perez, C. Gomez-Reino, J.M. Cuadrado, �??Diffraction patterns and zone plates produced by thin linear axicons,�?? Optica Acta 33, (9), 1161-1176, (1986). Reprinted in J. Ojeda-Castaneda, C. Gomez-Reino (ed), Selected Papers on Zone Plates, Washington: (SPIE Opt. Eng. Press 1996)
    [CrossRef]
  5. Khukhlevsky, S.V., �??Optical waveguide fields as free space waves,�?? Europhys. Lett. 54, 461, (2001),
    [CrossRef]
  6. S.V. Khukhlevsky, G. Nyitray, V. L. Kantsyrev, �??Fields of optical waveguides as waves in free space,�?? Phys Rev. E 64, 026603, (2001)
  7. J. Canning, E. Buckley, K. Lyytikainen, T. Ryan, �??Wavelength Dependent Leakage in a Fresnel-Based Air-Silica Structured Optical Fibre,�?? Opt. Commun. 205, 95 (2002)
    [CrossRef]
  8. J. Canning, E. Buckley, K. Lyytikainen, �??Propagation in Air by Field Superposition of Scattered Light within a Fresnel Fibre,�?? Accepted to Opt. Lett. (2002)
  9. J. Canning, K. Sommer, S. Huntington, A.L.G. Carter, �??Silica based fibre Fresnel lens,�?? Opt. Commun. 199, 375, (2001)
    [CrossRef]
  10. L. Kaiser, H.W. Astle, �??Low-loss single material fibres made from pure fused silica,�?? Bell System Tech. J. 53, 1021-1039, (1974)
  11. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allen, �??Single-Mode Photonic Band Gap Guidance of Light in Air,�?? Science 285, 1537, (1999)
    [CrossRef] [PubMed]
  12. J.C. Stover, Optical Scattering: Measurement and Analysis, (SPIE Optical Engineering Press 1995)
    [CrossRef]
  13. A.W. Snyder, D.J. Mitchell, and Y. Kivshar, "Unification of linear and nonlinear wave optics," Mod. Phys. Lett. B 9 1479-1506 (1995)
    [CrossRef]
  14. Y. S. Tammela, P. Kiiveri, S. Särkilahti, M. Hotoleanu, H. Valkonen, M. Rajala, J. Kurki, K. Janka, �??Direct Nanoparticle Deposition Process for manufacturing very short high gain Er-doped silica glass fibers,�?? Proceedings of European Conference Optical Communications (ECOC 2002), Copenhagen Denmark, Volume 4, 9.4.2, (2002
  15. Y.J. Guo, S.K. Barton, �??Fresnel zone plate reflector incorporating rings,�?? IEEE Microwave & Guided Wave Letts. 3, 417, (1993)
    [CrossRef]
  16. L. Kipp, M. Skibowski, R. Johnson, R. Bendt, R. Adelung, S. Harm, R. Seemann, �??Sharper images by focusing soft x-rays with photon sieves,�?? Nature 414, 184-188, 2001
    [CrossRef] [PubMed]
  17. L. Farr, J.C. Knight, B.J. Mangand, T. Roberts, �??Low loss photonic crystal fibre,�?? European Conference on Optical Communication (ECOC 2002), Copenhagen Denamrk, post-deadline paper PD13, (2002)
  18. J. Broeng, T. Sondegaard, S.E. Barkou, P. M. Barbeito, A. Bjarklev, �??Wave guidance by the photonic bandgap effect in optical fibres,�?? J. Opt. A: Pure Appl. Opt. 1, 477-482, (1999)
    [CrossRef]
  19. J. West, D. Mueller, K. Koch, J. Fajardo, N. Venkataraman, M. Gallagher, C. Smith, �??Low Loss (13dB/km) Air Core Photonic Band-Gap Fibre,�?? European Conference on Optical Communications (ECOC 2002), Copenhagen, Denmark, postdeadline paper PD1.1, (2002)
  20. T.A. Birks, J.C. Knight, B.J. Mangan, F. Benaid, P.J. Roberts, P. St. J. Russel, �??Photonic Bandgap Fibres,�?? European Conference on Optical Communications (ECOC 2002), Copenhagen, Denmark, Symposium paper 1.3, (2002)
  21. S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos, Y. Fink, �??External reflection from omnidirectional dielectric mirror fibres,�?? Science 296, 510-513, (2002).
    [CrossRef] [PubMed]
  22. W. Lauterborn, T. Kurz, M. Wiesenfeldt, Coherent Optics, (Springer-Verlag 1999)
  23. N. A. Mortensen, J. R. Folkenber, �??Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,�?? Opt. Express 10, 475-481 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475</a>
    [CrossRef] [PubMed]
  24. H.J. Lezec, A. Degiron, E. Devauk, R.A. Linke, L. Martin-Moreno, F.J. Grcia-Visal, T.W. Ebbeson, �??Beaming light from a subwavelength aperture,�?? Science 297, 820-822, (2002)
    [CrossRef] [PubMed]
  25. M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2- Si multilayer structures,�?? Appl. Phys. Lett. 49, 13-15, (1986)
    [CrossRef]
  26. N.M. Litchinitser, A.K. Abeeluck, C. Headley, B.J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594, (2002)
    [CrossRef]

Appl. Phys. Lett. (1)

M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2- Si multilayer structures,�?? Appl. Phys. Lett. 49, 13-15, (1986)
[CrossRef]

Bell System Tech. J. (1)

L. Kaiser, H.W. Astle, �??Low-loss single material fibres made from pure fused silica,�?? Bell System Tech. J. 53, 1021-1039, (1974)

Europhys. Lett. (1)

Khukhlevsky, S.V., �??Optical waveguide fields as free space waves,�?? Europhys. Lett. 54, 461, (2001),
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

Y.J. Guo, S.K. Barton, �??Fresnel zone plate reflector incorporating rings,�?? IEEE Microwave & Guided Wave Letts. 3, 417, (1993)
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Broeng, T. Sondegaard, S.E. Barkou, P. M. Barbeito, A. Bjarklev, �??Wave guidance by the photonic bandgap effect in optical fibres,�?? J. Opt. A: Pure Appl. Opt. 1, 477-482, (1999)
[CrossRef]

Mod. Phys. Lett. B (1)

A.W. Snyder, D.J. Mitchell, and Y. Kivshar, "Unification of linear and nonlinear wave optics," Mod. Phys. Lett. B 9 1479-1506 (1995)
[CrossRef]

Nature (1)

L. Kipp, M. Skibowski, R. Johnson, R. Bendt, R. Adelung, S. Harm, R. Seemann, �??Sharper images by focusing soft x-rays with photon sieves,�?? Nature 414, 184-188, 2001
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Canning, E. Buckley, K. Lyytikainen, T. Ryan, �??Wavelength Dependent Leakage in a Fresnel-Based Air-Silica Structured Optical Fibre,�?? Opt. Commun. 205, 95 (2002)
[CrossRef]

J. Canning, �??Diffraction-Free Mode Generation and Propagation in Optical Waveguides,�?? Opt. Commun. 207, 35-39 (2002)
[CrossRef]

J. Canning, K. Sommer, S. Huntington, A.L.G. Carter, �??Silica based fibre Fresnel lens,�?? Opt. Commun. 199, 375, (2001)
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

N.M. Litchinitser, A.K. Abeeluck, C. Headley, B.J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594, (2002)
[CrossRef]

J. Canning, E. Buckley, K. Lyytikainen, �??Propagation in Air by Field Superposition of Scattered Light within a Fresnel Fibre,�?? Accepted to Opt. Lett. (2002)

Optica Acta (1)

M.V. Perez, C. Gomez-Reino, J.M. Cuadrado, �??Diffraction patterns and zone plates produced by thin linear axicons,�?? Optica Acta 33, (9), 1161-1176, (1986). Reprinted in J. Ojeda-Castaneda, C. Gomez-Reino (ed), Selected Papers on Zone Plates, Washington: (SPIE Opt. Eng. Press 1996)
[CrossRef]

Phys Rev. E (1)

S.V. Khukhlevsky, G. Nyitray, V. L. Kantsyrev, �??Fields of optical waveguides as waves in free space,�?? Phys Rev. E 64, 026603, (2001)

Science (3)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allen, �??Single-Mode Photonic Band Gap Guidance of Light in Air,�?? Science 285, 1537, (1999)
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devauk, R.A. Linke, L. Martin-Moreno, F.J. Grcia-Visal, T.W. Ebbeson, �??Beaming light from a subwavelength aperture,�?? Science 297, 820-822, (2002)
[CrossRef] [PubMed]

S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos, Y. Fink, �??External reflection from omnidirectional dielectric mirror fibres,�?? Science 296, 510-513, (2002).
[CrossRef] [PubMed]

Other (8)

W. Lauterborn, T. Kurz, M. Wiesenfeldt, Coherent Optics, (Springer-Verlag 1999)

J.C. Stover, Optical Scattering: Measurement and Analysis, (SPIE Optical Engineering Press 1995)
[CrossRef]

Y. S. Tammela, P. Kiiveri, S. Särkilahti, M. Hotoleanu, H. Valkonen, M. Rajala, J. Kurki, K. Janka, �??Direct Nanoparticle Deposition Process for manufacturing very short high gain Er-doped silica glass fibers,�?? Proceedings of European Conference Optical Communications (ECOC 2002), Copenhagen Denmark, Volume 4, 9.4.2, (2002

L. Farr, J.C. Knight, B.J. Mangand, T. Roberts, �??Low loss photonic crystal fibre,�?? European Conference on Optical Communication (ECOC 2002), Copenhagen Denamrk, post-deadline paper PD13, (2002)

J. West, D. Mueller, K. Koch, J. Fajardo, N. Venkataraman, M. Gallagher, C. Smith, �??Low Loss (13dB/km) Air Core Photonic Band-Gap Fibre,�?? European Conference on Optical Communications (ECOC 2002), Copenhagen, Denmark, postdeadline paper PD1.1, (2002)

T.A. Birks, J.C. Knight, B.J. Mangan, F. Benaid, P.J. Roberts, P. St. J. Russel, �??Photonic Bandgap Fibres,�?? European Conference on Optical Communications (ECOC 2002), Copenhagen, Denmark, Symposium paper 1.3, (2002)

J. Ojeda-Castenada, C. Gomez-Reino, Selected Papers on Zone Plates; (SPIE Milestone Series 1996), Vol. MS 128

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas, (Artech House 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 2.
Fig. 2.

(a) cross-section of fibre preform; (b) cross-section of drawn fibre; (c) near field profile observed at 1550nm; (d) near-field profile observed at 632.8nm.

Fig. 3.
Fig. 3.

Cross-section of Fresnel fibre with centre hole.

Fig. 5.
Fig. 5.

Near-field profiles of Fresnel fibre with central hole at three wavelengths.

Fig. 6.
Fig. 6.

Far-field profiles at varying distance away from the Fresnel fibre end face. Image reconstruction is observed at ach plane. The white arrows denote a π/6 rotation between the various images in the far-field.

Fig. 7.
Fig. 7.

Representation of the optical field “bubble” generated between the two foci of the Fresnel fibre or lens. A micro- or nano- particle is caught within in.

Fig. 8.
Fig. 8.

Schematic illustration of Fresnel lens spliced onto fibre tip. Cross-section

Fig. 9.
Fig. 9.

Field profiles within, at the end and in the far field of the Fresnel fibre lens at 1510nm.

Fig. 10.
Fig. 10.

Position from the end face of the Fresnel lens for different wavelengths from a tunable laser source. The field within the lens is taken only at 1510nm.

Metrics