Abstract

We report on a novel scheme for generating a broad spectrum in the UV region. This scheme enables us to control the phase of the UV pulse through a frequency-mixing process in a nonlinear crystal. For group velocity matching, it is essential that a monochromatic beam should be sum-frequency mixed with an angularly dispersed beam having a broad spectrum in noncollinear geometry. We found analytically unique solutions for a noncollinear angle, for an angular dispersion of the broadband input beam, and for an angle of the beam from the optical axis in a nonlinear crystal, with the condition that there is no angular dispersion in the output beam. Based on the analysis of this scheme, we obtained UV pulses with a sufficiently broad spectrum for obtaining a sub-20-fs pulsewidths in the experiment. The improvement of conversion efficiency and compensation of chirp are also discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Dudovich, B. Dayan, S. M. Gallagher, and Y. Silberberg, �??Transform-Limited Pulses Are Not Optimal for Resonant Mutiphoton Transition,�?? Phys. Rev. Lett. 86, 47�??50 (2001).
    [CrossRef] [PubMed]
  2. J. Degert, W. Wohlleben, B. Chatel, M. Motzkus, and B. Girard, �??Realization of a Time-Domain Frensel Lens with Coherent Control,�?? Phys. Rev. Lett. 89, 203003�??1�?? 203003�??4 (2002).
    [CrossRef] [PubMed]
  3. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929�??1960 (2000).
    [CrossRef]
  4. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575�??577 (2000).
    [CrossRef]
  5. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, �??Frequency doubling of phase-modulated, ultrashort laser pulses,�?? Appl. Phys. B 73, 273�?? 277 (2001).
  6. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, �??Programmable femtosecond laser pulses in the ultraviolet,�?? J. Opt. Soc. Am. B 18, 866�?? 871 (2001).
    [CrossRef]
  7. A. Suda, Y. Oishi, K. Nagasaka, P. Wang, and K. Midorikawa, �??A spatial light modulator based on fused-silica plates for adaptive feedback control of intense femtosecond laser pulses,�?? Opt. Express 9, 2�?? 6 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-1-2">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-1-2</a>
    [CrossRef]
  8. A. Balt¡uska and T. Kobayashi, �??Adaptive shaping of two-cycle visible pulses using a flexible mirror,�?? Appl. Phys. B 75, 427�?? 443 (2002).
    [CrossRef]
  9. H.-S. Tan, E. Schreiber, and W. S. Warren, �??High-resolution indirect pulse shaping by parametric transfer,�?? Opt. Lett. 27, 439�?? 441 (2002).
    [CrossRef]
  10. A. Dubeitis, G. Jonasauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric ampli.cation in BBO crystal,�?? Opt. Commun. 88, 437�??440 (1992).
    [CrossRef]
  11. G. Szabo and Z. Bor, �??Frequency Conversion of Ultrashort Pulses,�?? Appl. Phys. B 58, 237�?? 241 (1994).
    [CrossRef]
  12. S. Saikan, D. Ouw, and F. P. Schafer, �??Automatic phase-matched frequency-doubling system for the 240�??350-nm region,�?? Appl. Opt. 18, 193�?? 196 (1979).
    [CrossRef] [PubMed]
  13. G. Szabo and Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51�?? 54 (1990).
    [CrossRef]
  14. R. A. Cheville, M. T. Reiten, and N. J. Halas, �??Wide-bandwidth frequency doubling with high conversion e.ciency,�?? Opt. Lett. 17, 1343�?? 1345 (1992).
    [CrossRef] [PubMed]
  15. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, �??All-prism achromatic phase matching for tunable second-harmonic generation,�?? Appl. Opt. 38, 3316�?? 3323 (1999).
    [CrossRef]
  16. T. Nakajima and K. Miyazaki, �??Spectrally compensated third harmonic generation using angular dispersers,�?? Opt. Commun. 163, 217�?? 222 (1999).
    [CrossRef]
  17. K. Osvay and I. N. Ross, �??Broadband sum-frequency mixing by chirp-assisted group-velocity matching,�?? J. Opt. Soc. Am. B 13, 1431�?? 1438 (1996).
    [CrossRef]
  18. T. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabo, �??Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,�?? Opt. Lett. 17, 1691�?? 1693 (1992).
    [CrossRef]
  19. T. Wilhelm, J. Piel, and E. Riedle, �??Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,�?? Opt. Lett. 22, 1494�?? 1496 (1997).
    [CrossRef]
  20. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse ampli.cation,�?? J. Opt. Soc. Am. B 19, 2945�?? 2956 (2002).
    [CrossRef]
  21. Y. Nabekawa, Y. Shimizu, and K. Midorikawa, �??Sub-20-fs terawatt-class laser system with a mirrorless regenerative ampli.er and an adaptive phase controller,�?? Opt. Lett. 27, 1265�??1267 (2002).
    [CrossRef]
  22. Y. Nabekawa, K. Kondo, N. Sarukura, K. Sajiki, and S. Watanabe, �??Terrawatt KrF/Ti:sapphire hybrid laser system,�?? Opt. Lett. 22, 1922�??1924 (1993).
    [CrossRef]
  23. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, �??Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,�?? Opt. Lett. 19, 1538�??1540 (1994).
    [CrossRef] [PubMed]
  24. Y. Nabekawa, D. Yoshitomi, T. Sekikawa, and S. Watanabe, �??High-Average-Power Femtosecond KrF Excimer Laser,�?? IEEE J. Select. Topics Quantum Electron. 7, 551�??558 (2001).
    [CrossRef]
  25. K. Kato, �??Second-Harmonic Generation to 2048 ªA in β-BaB2O4,�?? IEEE J. Quantum Electron. 22, 1013�??1014 (1986).
    [CrossRef]
  26. D. Eimerl, L. Davis, S. Velsco, E. K. Graham, and A. Zalkin, �??Optical, mechanical, and thermal properties of barium borate,�?? J. Appl. Phys. 62, 1968�??1983 (1987).
    [CrossRef]
  27. K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, �??High-precision measurement of angular dispersion in a cpa laser,�?? Appl. Phys. B [Suppl.], 74, S259�??S263 (2002).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. B (5)

K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, �??High-precision measurement of angular dispersion in a cpa laser,�?? Appl. Phys. B [Suppl.], 74, S259�??S263 (2002).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, �??Frequency doubling of phase-modulated, ultrashort laser pulses,�?? Appl. Phys. B 73, 273�?? 277 (2001).

A. Balt¡uska and T. Kobayashi, �??Adaptive shaping of two-cycle visible pulses using a flexible mirror,�?? Appl. Phys. B 75, 427�?? 443 (2002).
[CrossRef]

G. Szabo and Z. Bor, �??Frequency Conversion of Ultrashort Pulses,�?? Appl. Phys. B 58, 237�?? 241 (1994).
[CrossRef]

G. Szabo and Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51�?? 54 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, �??Second-Harmonic Generation to 2048 ªA in β-BaB2O4,�?? IEEE J. Quantum Electron. 22, 1013�??1014 (1986).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

Y. Nabekawa, D. Yoshitomi, T. Sekikawa, and S. Watanabe, �??High-Average-Power Femtosecond KrF Excimer Laser,�?? IEEE J. Select. Topics Quantum Electron. 7, 551�??558 (2001).
[CrossRef]

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsco, E. K. Graham, and A. Zalkin, �??Optical, mechanical, and thermal properties of barium borate,�?? J. Appl. Phys. 62, 1968�??1983 (1987).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

T. Nakajima and K. Miyazaki, �??Spectrally compensated third harmonic generation using angular dispersers,�?? Opt. Commun. 163, 217�?? 222 (1999).
[CrossRef]

A. Dubeitis, G. Jonasauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric ampli.cation in BBO crystal,�?? Opt. Commun. 88, 437�??440 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

H.-S. Tan, E. Schreiber, and W. S. Warren, �??High-resolution indirect pulse shaping by parametric transfer,�?? Opt. Lett. 27, 439�?? 441 (2002).
[CrossRef]

Y. Nabekawa, Y. Shimizu, and K. Midorikawa, �??Sub-20-fs terawatt-class laser system with a mirrorless regenerative ampli.er and an adaptive phase controller,�?? Opt. Lett. 27, 1265�??1267 (2002).
[CrossRef]

T. Wilhelm, J. Piel, and E. Riedle, �??Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,�?? Opt. Lett. 22, 1494�?? 1496 (1997).
[CrossRef]

T. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabo, �??Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,�?? Opt. Lett. 17, 1691�?? 1693 (1992).
[CrossRef]

Y. Nabekawa, K. Kondo, N. Sarukura, K. Sajiki, and S. Watanabe, �??Terrawatt KrF/Ti:sapphire hybrid laser system,�?? Opt. Lett. 22, 1922�??1924 (1993).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575�??577 (2000).
[CrossRef]

R. A. Cheville, M. T. Reiten, and N. J. Halas, �??Wide-bandwidth frequency doubling with high conversion e.ciency,�?? Opt. Lett. 17, 1343�?? 1345 (1992).
[CrossRef] [PubMed]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, �??Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,�?? Opt. Lett. 19, 1538�??1540 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

N. Dudovich, B. Dayan, S. M. Gallagher, and Y. Silberberg, �??Transform-Limited Pulses Are Not Optimal for Resonant Mutiphoton Transition,�?? Phys. Rev. Lett. 86, 47�??50 (2001).
[CrossRef] [PubMed]

J. Degert, W. Wohlleben, B. Chatel, M. Motzkus, and B. Girard, �??Realization of a Time-Domain Frensel Lens with Coherent Control,�?? Phys. Rev. Lett. 89, 203003�??1�?? 203003�??4 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929�??1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Phase matching (wave-vector matching) in NOPA. (b) Noncollinear angularly dispersed wave-vector matching in sum-frequency mixing.

Fig. 2.
Fig. 2.

Definitions of angles. An angle of κ b and that of κ c from κ a0 are defined as α ab and α ac , respectively. A sign of the angle is plus when the direction of the angle is the same as that of the angle of κ a0 vector from z-(optical) axis. This figure shows these angles at the center angular frequencies of ω b0 and ω c0 . Angularly dispersed wave-vector components in beam B are schematically shown as three arrows with different directions and lengths. The wave-vector of the monochromatic beam, κ a0 , and that of the generated beam at the center angular frequency, κ c0 , are far from the optical axis with the angles θ a0 and θ c0 , respectively. The direction of the wave vector of the generated beam, κ c , generally depends on the angular frequency, ω c , although in this figure we depict the ends of the three arrows for κ c c ) as being aligned.

Fig. 3.
Fig. 3.

Wave-vector mismatches to the wavelength of Ti:sapphire laser, Δκ b )L, in collinear (brown dotted curve) and noncollinear angularly dispersed geometries (red dot-dashed curve and blue solid curve) for Type I (a) and for Type II (b) SFM in a BBO crystal. Wavelength of the monochromatic beam is set to be 532 nm. The acceptable power spectra as the functions of the wavelength of the Ti:sapphire laser, |η(λ b )|2, are also shown below the wave-vector mismatches. The slight tilt of the crystal from the complete WVMC (blue solid curves) broadened the bandwidth in spite of a central dip.

Fig. 4.
Fig. 4.

Experimental setup for NADG for GVMC.

Fig. 5.
Fig. 5.

Spectra of the input Ti:sapphire laser pulse (a) and the UV pulse (b) with respect to wavelengths of λ b and λ c .

Fig. 6.
Fig. 6.

Power spectra of the input Ti:sapphire laser pulse (red, dotted curve) and UV pulse (blue, solid curve). Bottom and top axes correspond to the optical frequency of UV, νUV=c c , and the Ti:sapphire laser, νTiS=c b , respectively. A brown, dotdashed curve is the spectrum of the Ti:sapphire laser filtered with an acceptable power spectrum.

Fig. 7.
Fig. 7.

Energy of UV pulse (solid circles) and pulse shape of the second harmonic of the Nd:YAG laser.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E ˜ 3 ( ω ) d ω E ˜ 1 ( ω ) E ˜ 2 ( ω ω ) .
E ˜ 1 ( ω ) A 1 δ ( ω ω 1 0 ) ,
E ˜ 3 ( ω ) E ˜ 2 ( ω ω 1 0 ) ,
Δ k k c ( ω c ) { k a ( ω a ) + k b ( ω b ) } ,
ω c = ω a + ω b .
Δ k = k c ( ω c 0 ) { k a ( ω a 0 ) + k b ( ω b 0 ) }
+ { d k c d ω c | 0 d k b d ω b | 0 } Δ ω + O ( Δ ω 2 ) .
0 = k c ( ω c 0 ) { k a ( ω a 0 ) + k b ( ω b 0 ) } ,
0 = d k c d ω c | 0 d k b d ω b | 0 ,
k a ( ω a ) = k a ( ω a 0 ) = k a 0 e a 0 ,
k b ( ω b ) = k b ( ω b ) cos { α ab ( ω b ) } e a 0 + k b ( ω b ) sin { α ab ( ω b ) } e b 0 ,
k c ( ω c ) = k c ( ω c ) cos { α ac ( ω c ) } e a 0 + k c ( ω c ) sin { α ac ( ω c ) } e b 0 ,
k c 0 cos ( α ac 0 ) { k a 0 + k b 0 cos ( α ab 0 ) } = 0 ,
k c 0 sin ( α ac 0 ) k b 0 sin ( α ab 0 ) = 0 ,
d k b d ω b | 0 cos ( α ab 0 ) k b 0 sin ( α ab 0 ) d α ab d ω b | 0
{ d k c d ω c | 0 cos ( α ac 0 ) k c 0 sin ( α ac 0 ) d α ac d ω c | 0 } = 0 ,
d k b d ω b | 0 sin ( α ab 0 ) + k b 0 cos ( α ab 0 ) d α ab d ω b | 0
{ d k c d ω c | 0 sin ( α ac 0 ) + k c 0 cos ( α ac 0 ) d α ac d ω c | 0 } = 0 ,
d α ac d ω c | 0 0 ,
υ g 0 b cos ( α ab 0 α ac 0 ) = υ g 0 c ,
υ g 0 b = ( d k b d ω b | 0 ) −1 ,
υ g 0 c = ( d k c d ω c | 0 ) −1 .
d α ab d ω b | 0 gvm = tan ( α ab 0 gvm α ac 0 gvm ) 1 k b 0 d k b d ω b | 0 gvm ,
sin θ c 0 = { [ n o ( ω c 0 ) n ¯ ab 0 ( α ab 0 ) ] 2 1 [ n o ( ω c 0 ) n e ( ω c 0 ) ] 2 1 } 1 2 ,
n ¯ ab 0 ( α ab 0 )
{ [ ω bc 0 n o ( ω b 0 ) sin α ab 0 ] 2 + [ ω ac 0 n o ( ω a 0 ) + ω bc 0 n o ( ω b 0 ) cos α ab 0 ] 2 } 1 2 ,
η ( ω a 0 , ω b ) L −1 0 L d ζ e i Δ k ( ω a 0 , ω b ) ζ
= e i Δ k ( ω a 0 , ω b ) L 2 sinc { Δ k ( ω a 0 , ω b ) L 2 } ,
d eff I = [ d 11 cos ( 3 φ ) d 22 sin ( 3 φ ) ] cos θ c 0 + d 31 sin θ c 0
d 11 cos ( 3 φ ) cos θ c 0 ,
d eff II = d 11 cos θ a 0 cos θ c 0 sin ( 3 φ ) + d 22 cos θ a 0 cos θ c 0 cos ( 3 φ )
d 11 cos θ a 0 cos θ c 0 sin ( 3 φ ) ,

Metrics