Abstract

We present a procedure for optimizing two-dimensional (2D) Photonic Band Gap (PBG) structures. The procedure discretizes the unit cell of a PBG structure into a binary cell and uses Direct Binary Search to search through a terrain of possible solutions in order to find a more optimal one. This process is designed either for improving the absolute band gap or opening a new one, for a predefined PBG structure. By applying the procedure on a honeycomb array of high dielectric objects in an air background, we increased its Maximum Absolute Gap-to-Midgap Ratio (MAGTMR) to more than twice that of the initial structure. To further prove the utility of this procedure, we also present other examples.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  3. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  4. A. R. McGurn, “Photonic crystal circuits: A theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235 (2000).
    [Crossref]
  5. M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).
  6. S. John and M. Florescu, “Photonic bandgap materials:towards an all-optical micro-transistor,” J. Opt. A:Pure Appl. Opt. 3, S103 (2001).
    [Crossref]
  7. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
    [Crossref] [PubMed]
  8. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
    [Crossref]
  9. A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,” Appl. Phy. Lett. 78, 3184 (2001).
    [Crossref]
  10. K. Nam, “Photonic Crystals,” http://www.phys.ksu.edu/~namkv/photonic.html.
  11. J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
    [Crossref]
  12. T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.
  13. J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.
  14. M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
    [Crossref]
  15. M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
    [Crossref]
  16. Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
    [Crossref]
  17. Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
    [Crossref]
  18. C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
    [Crossref]
  19. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
    [Crossref]
  20. E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
    [Crossref] [PubMed]
  21. F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
    [Crossref]
  22. P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
    [Crossref]
  23. W. H. R. Hillebrand and W. Harms, “Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness,” Phys. Stat. Sol. 217, 981 (2000).
    [Crossref]
  24. X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
    [Crossref]
  25. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
    [Crossref]
  26. P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices: Square and circular rods,” Phys. Rev. B. 46, 4973 (1992).
    [Crossref]
  27. C. M. Anderson and K. P. Giapis, “Symmetry reduction in grounp 4mm Photonic crystals,” Phys. Rev. B. 56, 7313 (1997).
    [Crossref]
  28. C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,” Phys. Rev. Lett. 77, 2949 (1996).
    [Crossref] [PubMed]
  29. M. Qiu and S. He, “Large Complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B. 60, 10610 (1999).
    [Crossref]
  30. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
    [Crossref]
  31. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
    [Crossref] [PubMed]
  32. K.M. Leung and Y.F. Liu, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media,” Phys. Rev. Lett. 65, 2646 (1990).
    [Crossref] [PubMed]
  33. C. Lemmi, S. Ledesma, J. Campos, and M. Villarreal, “Gray-level computer-generated hologram filters for multiple-object correlation,” Appl. Opt. 39, 1233 (2000).
    [Crossref]
  34. V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computergenerated holograms,” Opt. Commun. 125, 43 (1996).
    [Crossref]
  35. N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

2002 (2)

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

2001 (5)

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

S. John and M. Florescu, “Photonic bandgap materials:towards an all-optical micro-transistor,” J. Opt. A:Pure Appl. Opt. 3, S103 (2001).
[Crossref]

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,” Appl. Phy. Lett. 78, 3184 (2001).
[Crossref]

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

2000 (4)

C. Lemmi, S. Ledesma, J. Campos, and M. Villarreal, “Gray-level computer-generated hologram filters for multiple-object correlation,” Appl. Opt. 39, 1233 (2000).
[Crossref]

A. R. McGurn, “Photonic crystal circuits: A theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235 (2000).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

W. H. R. Hillebrand and W. Harms, “Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness,” Phys. Stat. Sol. 217, 981 (2000).
[Crossref]

1999 (3)

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

M. Qiu and S. He, “Large Complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B. 60, 10610 (1999).
[Crossref]

1998 (3)

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
[Crossref]

Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
[Crossref]

1997 (3)

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
[Crossref]

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in grounp 4mm Photonic crystals,” Phys. Rev. B. 56, 7313 (1997).
[Crossref]

1996 (3)

C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,” Phys. Rev. Lett. 77, 2949 (1996).
[Crossref] [PubMed]

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computergenerated holograms,” Opt. Commun. 125, 43 (1996).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
[Crossref]

1992 (3)

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[Crossref]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices: Square and circular rods,” Phys. Rev. B. 46, 4973 (1992).
[Crossref]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

1990 (2)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
[Crossref] [PubMed]

K.M. Leung and Y.F. Liu, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media,” Phys. Rev. Lett. 65, 2646 (1990).
[Crossref] [PubMed]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Anderson, C. M.

C. M. Anderson and K. P. Giapis, “Symmetry reduction in grounp 4mm Photonic crystals,” Phys. Rev. B. 56, 7313 (1997).
[Crossref]

C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,” Phys. Rev. Lett. 77, 2949 (1996).
[Crossref] [PubMed]

Aritome, H.

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Bayindir, M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Bertho, D.

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
[Crossref]

Biswas, R.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Bolden, E. A.

J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.

Boutenko, V.

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computergenerated holograms,” Opt. Commun. 125, 43 (1996).
[Crossref]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

Campos, J.

Cassagne, D.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
[Crossref]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
[Crossref] [PubMed]

Chelnokov, A.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

Chen, Y.

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Chevallier, R.

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computergenerated holograms,” Opt. Commun. 125, 43 (1996).
[Crossref]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

Crozat, P.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

Dapkus, P.D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Ferrando, A.

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,” Appl. Phy. Lett. 78, 3184 (2001).
[Crossref]

Fischer, M.

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

Flom, S. R.

J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.

Florescu, M.

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

S. John and M. Florescu, “Photonic bandgap materials:towards an all-optical micro-transistor,” J. Opt. A:Pure Appl. Opt. 3, S103 (2001).
[Crossref]

Forchel, A.

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

Gadot, F.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

Gentner, J. L.

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

Giapis, K. P.

C. M. Anderson and K. P. Giapis, “Symmetry reduction in grounp 4mm Photonic crystals,” Phys. Rev. B. 56, 7313 (1997).
[Crossref]

C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,” Phys. Rev. Lett. 77, 2949 (1996).
[Crossref] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

Gu, B.

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
[Crossref]

Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
[Crossref]

Gu, B.-Y.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

Happ, T. D.

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

Harms, W.

W. H. R. Hillebrand and W. Harms, “Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness,” Phys. Stat. Sol. 217, 981 (2000).
[Crossref]

He, S.

M. Qiu and S. He, “Large Complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B. 60, 10610 (1999).
[Crossref]

Hillebrand, W. H. R.

W. H. R. Hillebrand and W. Harms, “Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness,” Phys. Stat. Sol. 217, 981 (2000).
[Crossref]

Ho, K. M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
[Crossref] [PubMed]

Imada, M.

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

John, S.

S. John and M. Florescu, “Photonic bandgap materials:towards an all-optical micro-transistor,” J. Opt. A:Pure Appl. Opt. 3, S103 (2001).
[Crossref]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Jouanin, C.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
[Crossref]

Kamp, M.

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

Kawakami, S.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Kawashima, T.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Kee, C. S.

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
[Crossref]

Kim, I.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Kim, J. E.

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
[Crossref]

Klopf, F.

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

Kuramochi, E.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Ledesma, S.

Lee, R.K.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Lemmi, C.

Leung, K.M.

E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

K.M. Leung and Y.F. Liu, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media,” Phys. Rev. Lett. 65, 2646 (1990).
[Crossref] [PubMed]

Li, Z.

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
[Crossref]

Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
[Crossref]

Liu, Y.F.

K.M. Leung and Y.F. Liu, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media,” Phys. Rev. Lett. 65, 2646 (1990).
[Crossref] [PubMed]

Lourtioz, J.-M.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

Lustrac, A. D.

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

Markard, A.

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

McGurn, A. R.

A. R. McGurn, “Photonic crystal circuits: A theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235 (2000).
[Crossref]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

Miret, J. J.

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,” Appl. Phy. Lett. 78, 3184 (2001).
[Crossref]

Mochizuk, M.

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

Moosburger, J.

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

Nakao, Z.

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Nam, K.

K. Nam, “Photonic Crystals,” http://www.phys.ksu.edu/~namkv/photonic.html.

Noda, S.

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

Notomi, M.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

O’Brien, J.D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Ozbay, E.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Painter, O.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Park, H. Y.

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
[Crossref]

Piche, M.

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices: Square and circular rods,” Phys. Rev. B. 46, 4973 (1992).
[Crossref]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[Crossref]

Pong, R. G. S.

J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.

Qiu, M.

M. Qiu and S. He, “Large Complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B. 60, 10610 (1999).
[Crossref]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

Scherer, A.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Shinya, A.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Shirk, J. S.

J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.

Sigalas, M. M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
[Crossref] [PubMed]

Takahashi, C.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Takahashi, J.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Tamura, S.

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Tanaka, T.

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

Temelkuran, B.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Tuttle, G.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Villarreal, M.

Villeneuve, P. R.

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[Crossref]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices: Square and circular rods,” Phys. Rev. B. 46, 4973 (1992).
[Crossref]

Wang, J.

Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
[Crossref]

Wang, N.

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

Wang, R.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

Wang, X.

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

Wang, X.-H.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Yang, G.

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
[Crossref]

Yang, G.-Z.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

Yariv, A.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Yokohama, I.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

Appl. Opt. (1)

Appl. Phy. Lett. (1)

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,” Appl. Phy. Lett. 78, 3184 (2001).
[Crossref]

Appl. Phys. Lett. (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495 (1992).
[Crossref]

F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780 (1997).
[Crossref]

IEICE Trans. Electro. (1)

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electro. E85C, 1025 (2002).

International J. Optoelectronics (1)

N. Wang, Y. Chen, Z. Nakao, S. Tamura, and H. Aritome, “Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm,” International J. Optoelectronics 12, 69 (1998).

J. Appl. Phys. (2)

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307 (2001).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

J. Lightwave Technol. (1)

M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol. 20, 873 (2002).
[Crossref]

J. Opt. A:Pure Appl. Opt. (1)

S. John and M. Florescu, “Photonic bandgap materials:towards an all-optical micro-transistor,” J. Opt. A:Pure Appl. Opt. 3, S103 (2001).
[Crossref]

Microelectron. Eng. (1)

J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, “Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask,” Microelectron. Eng. 57, 1017 (2001).
[Crossref]

Opt. Commun. (1)

V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computergenerated holograms,” Opt. Commun. 125, 43 (1996).
[Crossref]

Phys. Rev. A (1)

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

Phys. Rev. B (2)

A. R. McGurn, “Photonic crystal circuits: A theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235 (2000).
[Crossref]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969 (1992).
[Crossref]

Phys. Rev. B. (5)

X. Wang, B. Gu, Z. Li, and G. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B. 60, 11417 (1999).
[Crossref]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices: Square and circular rods,” Phys. Rev. B. 46, 4973 (1992).
[Crossref]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in grounp 4mm Photonic crystals,” Phys. Rev. B. 56, 7313 (1997).
[Crossref]

M. Qiu and S. He, “Large Complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B. 60, 10610 (1999).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B. 53, 7134 (1996).
[Crossref]

Phys. Rev. E. (1)

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E. 56, 6291 (1997).
[Crossref]

Phys. Rev. Lett. (6)

C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,” Phys. Rev. Lett. 77, 2949 (1996).
[Crossref] [PubMed]

K.M. Leung and Y.F. Liu, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media,” Phys. Rev. Lett. 65, 2646 (1990).
[Crossref] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).
[Crossref] [PubMed]

Z. Li, B. Gu, and G. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81, 2574 (1998).
[Crossref]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Phys. Stat. Sol. (1)

W. H. R. Hillebrand and W. Harms, “Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness,” Phys. Stat. Sol. 217, 981 (2000).
[Crossref]

Phys.Rev. B. (1)

Z. Li, J. Wang, and B. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys.Rev. B. 58, 3721 (1998).
[Crossref]

Phys.Rev.Lett. (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys.Rev.Lett. 65, 3152 (1990).
[Crossref] [PubMed]

Science (1)

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Other (4)

K. Nam, “Photonic Crystals,” http://www.phys.ksu.edu/~namkv/photonic.html.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, “Short cavity InP-lasers with 2D photonic crystal mirrors,” presented at Optoelectronics, 2001.

J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, “Nonlinear 2-d Photonic Crystals for Optical Limiting,” http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The discretized unit cell of a honeycomb lattice structure of dielectric cylinders in air with a resolution a/17

Fig. 2.
Fig. 2.

The unit cells and the numbered grids used for synthesis (a) the triangular/honeycomb lattice case (b) the rectangular lattice case

Fig. 3.
Fig. 3.

The brillouin zones and the irreducible brillouin zones for unit cell with diagonal symmetry (a) the rectangular lattice case (b) the triangular lattice case

Fig. 4.
Fig. 4.

The convergence of the maximum absolute bandgap-to-midgap ratio for optimization of a honeycomb lattice of hexagonal GaAs cylinders in air Figure 4 indicates that some

Fig. 5.
Fig. 5.

Optimization of a honeycomb lattice of hexagonal GaAs cylinders in air (a) the unit cell of the initial structure and its dispersion diagram (b) the unit cell of the optimized structure and its dispersion diagram

Fig. 6.
Fig. 6.

Optimization of a hexagonal lattice of hexagonal air holes with orientation θ = 24≊ in GaAs and the filling factor ƒ = 0.805 (a) the unit cell of the initial structure and its dispersion diagram (b) the unit cell of the optimized structure and its dispersion diagram

Fig. 7.
Fig. 7.

Optimization of a square lattice of square air holes with orientation θ = 30° in GaAs and the filling factor ƒ = 0.68 (a) the unit cell of the initial structure and its dispersion diagram (b) the unit cell of the optimized structure and its dispersion diagram

Metrics