Abstract

The goal of this study was to evaluate the capabilities of a calibrated autofluorescence imaging method for detecting neoplastic lesions. An imaging system that records autofluorescence images calibrated by the cross-polarized reflection images from excitation was instrumented for the evaluation. Cervical tissue was selected as the living tissue model. Sixteen human subjects were examined in vivo with the imaging system before routine examination procedures. It was found that calibrated autofluorescence signals from neoplastic lesions were generally lower than signals from normal cervical tissue. Neoplastic lesions can be differentiated from surrounding normal tissue based on the contrast in the calibrated autofluorescence. The effects of the optical properties of tissue on the calibrated fluorescence imaging were investigated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Richards-Kortum and E. Sevick-Muraca, �??Quantitative optical spectroscopy for tissue diagnosis,�?? Ann. Rev. Phy. Chem. 47, 555-606 (1996).
    [CrossRef]
  2. G. A. Wagnieres, W. M. Star and B.C. Wilson, �??In vivo fluorescence spectroscopy and imaging for oncological applications,�?? Photochem. Photobiol. 68, 603-32 (1998).
    [PubMed]
  3. N. Ramanujam, �??Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,�?? Neoplasia 2, 89-117 (2000).
    [CrossRef] [PubMed]
  4. R.M. Cothren, R.R. Richards-Kortum, M.V. Sivak, M. Fitzmaurice, R.P. Rava, G.A.Boyce, G.B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M.S. Feld, and R.E. Petras, �??Gastrointestinal tissue diagnosis by laserinduced fluorescence spectroscopy at endoscopy,�?? Gastrointest. Endosc. 36, 105-111 (1990).
    [CrossRef] [PubMed]
  5. J. Qu, C. MacAulay, S. Lam and B. Palcic, �??Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,�?? Opt. Eng. 34, 3334-3343 (1995).
    [CrossRef]
  6. M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh and G. J. Wagnieres, �??In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,�?? J. Biomed. Opt. 6, 41-51 (2001).
    [CrossRef] [PubMed]
  7. N. Ramanujam, M.F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva and R. Richards-Kortum, �??Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),�?? Gynecol. Oncol. 52, 31-38 (1994).
    [CrossRef] [PubMed]
  8. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen and R. Richards-Kortum, �??Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,�?? J. Biomed. Opt. 6, 385-396 (2001).
    [CrossRef] [PubMed]
  9. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam and M. S. Feld, �??NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,�?? Cancer Res. 62, 682-687 (2002).
    [PubMed]
  10. K. Izuishi, H. Tajiri, T. Fujii, N. Boku, A. Ohtsu, T. Ohnishi, M. Ryu, T. Kinoshita and S. Yoshida, �??The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging,�?? Endoscopy 31, 511-516 (1999).
    [CrossRef] [PubMed]
  11. M. Kobayashi, K. Shibuya, H. Hoshino and T. Fujisawa, �??Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode,�?? J. Biomed. Opt. 7, 603-608 (2002).
    [CrossRef] [PubMed]
  12. J. Y. Qu, Z. J. Huang and J. W. Hua, "Excitation and collection geometry insensitive fluorescence imaging of tissue-simulating turbid media," Appl. Opt. 39, 3344-3356 (2000).
    [CrossRef]
  13. J. Y. Qu, J. W. Hua and Z. J. Huang, "Correction of Geometrical Effects on Fluorescence Imaging of Tissue," Opt. Commun. 176, 319-326 (2000).
    [CrossRef]
  14. J. Y. Qu and J. W. Hua, "Calibrated fluorescence imaging of tissue in vivo," Appl. Phys. Lett. 78, 4040-4042 (2001).
    [CrossRef]
  15. S. Jutamulia and T. Asakura, �??Reduction of coherent noise using various artificial incoherent soures,�?? Optik 70, 52-57 (1985).
  16. A. Agrawal, C. Brookner, M. F. Mitchell and R. Richards-Kortum, �??Fluorescence spectroscopy of the cervix: Influence of acetic acid, cervical mucus, and vaginal medications,�?? Laser Surg. Med. 25, 237-249(1999)
    [CrossRef]
  17. Q. G. Zhang, M. G. Muller, J. Wu and M. S. Feld, �??Turbidity-free fluorescence spectroscopy of biological tissue,�?? Opt. Lett. 25, 1451-1453 (2000).
    [CrossRef]
  18. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu and Feld MS, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,�?? Appl. Opt. 40, 4633-4646 (2001).
    [CrossRef]
  19. S. P. Lin, L. H. Wang, S. L. Jacques and F. K. Tittel, �??Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,�?? Appl. Opt. 36, 136-143 (1997).
    [CrossRef] [PubMed]
  20. L. V. Wang and S. L. Jacques, �??Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,�?? Comput. Meth. Prog. Bio. 61, 163-170 (2000).
    [CrossRef]

Ann. Rev. Phy. Chem.

R. Richards-Kortum and E. Sevick-Muraca, �??Quantitative optical spectroscopy for tissue diagnosis,�?? Ann. Rev. Phy. Chem. 47, 555-606 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Y. Qu and J. W. Hua, "Calibrated fluorescence imaging of tissue in vivo," Appl. Phys. Lett. 78, 4040-4042 (2001).
[CrossRef]

Cancer Res.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam and M. S. Feld, �??NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,�?? Cancer Res. 62, 682-687 (2002).
[PubMed]

Comput. Meth. Prog. Bio.

L. V. Wang and S. L. Jacques, �??Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,�?? Comput. Meth. Prog. Bio. 61, 163-170 (2000).
[CrossRef]

Endoscopy

K. Izuishi, H. Tajiri, T. Fujii, N. Boku, A. Ohtsu, T. Ohnishi, M. Ryu, T. Kinoshita and S. Yoshida, �??The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging,�?? Endoscopy 31, 511-516 (1999).
[CrossRef] [PubMed]

Gastrointest. Endosc.

R.M. Cothren, R.R. Richards-Kortum, M.V. Sivak, M. Fitzmaurice, R.P. Rava, G.A.Boyce, G.B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M.S. Feld, and R.E. Petras, �??Gastrointestinal tissue diagnosis by laserinduced fluorescence spectroscopy at endoscopy,�?? Gastrointest. Endosc. 36, 105-111 (1990).
[CrossRef] [PubMed]

Gynecol. Oncol.

N. Ramanujam, M.F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva and R. Richards-Kortum, �??Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),�?? Gynecol. Oncol. 52, 31-38 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen and R. Richards-Kortum, �??Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,�?? J. Biomed. Opt. 6, 385-396 (2001).
[CrossRef] [PubMed]

M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh and G. J. Wagnieres, �??In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,�?? J. Biomed. Opt. 6, 41-51 (2001).
[CrossRef] [PubMed]

M. Kobayashi, K. Shibuya, H. Hoshino and T. Fujisawa, �??Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode,�?? J. Biomed. Opt. 7, 603-608 (2002).
[CrossRef] [PubMed]

Laser Surg. Med.

A. Agrawal, C. Brookner, M. F. Mitchell and R. Richards-Kortum, �??Fluorescence spectroscopy of the cervix: Influence of acetic acid, cervical mucus, and vaginal medications,�?? Laser Surg. Med. 25, 237-249(1999)
[CrossRef]

Neoplasia

N. Ramanujam, �??Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,�?? Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Opt. Commun.

J. Y. Qu, J. W. Hua and Z. J. Huang, "Correction of Geometrical Effects on Fluorescence Imaging of Tissue," Opt. Commun. 176, 319-326 (2000).
[CrossRef]

Opt. Eng.

J. Qu, C. MacAulay, S. Lam and B. Palcic, �??Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,�?? Opt. Eng. 34, 3334-3343 (1995).
[CrossRef]

Opt. Lett.

Optik

S. Jutamulia and T. Asakura, �??Reduction of coherent noise using various artificial incoherent soures,�?? Optik 70, 52-57 (1985).

Photochem. Photobiol.

G. A. Wagnieres, W. M. Star and B.C. Wilson, �??In vivo fluorescence spectroscopy and imaging for oncological applications,�?? Photochem. Photobiol. 68, 603-32 (1998).
[PubMed]

Supplementary Material (1)

» Media 1: MPG (1573 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) A schematic of the F/R colposcopic imaging system. P1 and P2 are the polarizers with their polarization orientations perpendicular to each other. F is the filter to remove the residual reflection of the excitation light. (b) Picture of actual imaging head.

Fig. 2.
Fig. 2.

Typical results obtained from a subject with low-grade SILs and high-grade SILs. (a)raw fluorescence image; (b) cross-polarized reflection image; (c) F/R ratio image.

Fig. 3.
Fig. 3.

F/R ratio image superimposed with real-time reflection image for guided biopsy. (a) (1.6 MB) Video clip of guided biopsy; (b) F/R ratio image.

Fig. 4.
Fig. 4.

Bar chart illustration of the mean values of the F/R ratio for the examined cervical tissues from 16 subjects.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( λ em ) = μ s ex l · R 0 ( λ ex ) ( R 0 ( λ ex ) R 0 ( λ em ) ε ( λ ex ) ε ( λ em ) ) 1 2 ( R ( λ em ) R 0 ( λ em ) + ε ( λ em ) ) · F ( λ em ) R ( λ ex )
f μ s ε l ( R R 0 + ε ) · F R
f ( λ em ) μ s ex l ( ε ( λ ex ) ε ( λ em ) ) 1 2 R 0 ( λ ex ) ( R 0 ( λ ex ) R 0 ( λ em ) ) 1 2 ( 1 + ε ( λ em ) ) · F ( λ em ) R ( λ ex )

Metrics