Abstract

We explore the use of air trenches to achieve compact high efficiency 90° waveguide bends and beamsplitters for waveguide material systems that have low refractive index and low refractive index contrast between the core and clad materials. For a single air interface, simulation results show that the optical efficiency of a waveguide bend can be increased from 78.4% to 99.2% by simply decreasing the bend angle from 90° to 60°. This can be explained by the angular spectrum of the waveguide mode optical field. For 90° bends we use a micro-genetic algorithm (GA) with a 2-D finite difference time domain (FDTD) method to rigorously design high efficiency waveguide bends composed of multiple air trenches. Simulation results show an optical efficiency of 97.2% for an optimized bend composed of three air trenches. Similarly, a single air trench can be designed to function as a 90° beamsplitter with 98.5% total efficiency.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. K. K. Lee, D. R. Lim, L. C. Kimmerling, J. Shin, and F. Cerrina, �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,�?? Opt. Lett. 26 1888 (2001).
  2. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimmerling, �??Low-loss polycrystalline silicon waveguides for silicon photonics,�?? J. Appl. Phys. 80 6120 (1996).
    [CrossRef]
  3. C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H. A. Haus, and J. D. Joannopoulus, �??High-Density Integrated Optics,�?? J. of Lightwave Technol., 17 1682-1692 Sept. (1999).
  4. R.L. Espinola, R.U. Ahmad, F. Pizzuto, M.J. Steel and R.M. Osgood, Jr., �??A study of high-index-contrast 90o waveguide bend structures,�?? Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517</a>
  5. R. A. Soref, J. Schmidtchen, and K. Petermann, �??Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,�?? J. Quantum Electron. 27 1971 (1991).
    [CrossRef]
  6. R. A. Soref, �??Silicon-based optoelectronics,�?? IEEE Proc. 81 1687 (1993).
  7. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, �??0.1 dB/cm waveguide losses in singlemode SOI rib waveguides,�?? Phot. Techn. Lett. 8 647 (1996).
  8. Y. Z. Tang, W. H. Wang, etc., �??Integrated waveguide turning mirror in silicon-on insulator,�?? Phot. Techn. Lett. 14 68-70, Jan. (2002).
  9. R. Orobtchouk, S. Laval, D. Pascal, A. Koster, �??Analysis of Integrated Optical Waveguide Mirrors,�?? J. Lightwave Technol. 15 815-820 (1997).
    [CrossRef]
  10. John E. Johnson, C.L. Tang, �??Precise determination of turning mirror loss using GaAs/AlGaAs lasers with up to ten 90o intracavity turning mirrors,�?? Phot. Techn. Lett. 4 24-26 (1992).
  11. P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet and R. J. Michlak, �??Electron-cyclotron resonance etching of mirrors for ridge-guided lasers,�?? Phot. Techn. Lett. 7 605-607 (1995).
  12. Chulhun Seo, Jerry C. Chen, �??Low transition losses in bent rib waveguides,�?? J. Lightwave Technol. 14 2255-2259 (1996).
    [CrossRef]
  13. L. Eldada and L. W. Shacklette, �??Advances in polymer integrated optics,�?? J. Sel. Top. Quantum Electron. 6 54 (2000).
  14. K. Wada, M. Popovic, S. Akiyama, H. A. Haus, J. Michel, �??Micron-size bending radii in silica-based waveguides,�?? Advanced Semiconductor Lasers and Applications/ Ultraviolet and Blue Lasers and Their Applications /Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001. Digest of the LEOS Summer Topical Meetings, (Copper Mountain, CO USA, 2001), 13-14.
  15. M. V. Klein and T. E. Furtak, Optics, 2nd Ed. (John Wiley and Sons, New York, 1986).
  16. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).
  17. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  18. J. Jiang and G. Nordin, �??A rigorous unidirectional method for designing finite aperture diffractive optical elements,�?? Opt. Express 7, 237-242 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237</a>

IEEE Proc. (1)

R. A. Soref, �??Silicon-based optoelectronics,�?? IEEE Proc. 81 1687 (1993).

J. Appl. Phys. (1)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimmerling, �??Low-loss polycrystalline silicon waveguides for silicon photonics,�?? J. Appl. Phys. 80 6120 (1996).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

R. Orobtchouk, S. Laval, D. Pascal, A. Koster, �??Analysis of Integrated Optical Waveguide Mirrors,�?? J. Lightwave Technol. 15 815-820 (1997).
[CrossRef]

Chulhun Seo, Jerry C. Chen, �??Low transition losses in bent rib waveguides,�?? J. Lightwave Technol. 14 2255-2259 (1996).
[CrossRef]

J. of Lightwave Technol. (1)

C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H. A. Haus, and J. D. Joannopoulus, �??High-Density Integrated Optics,�?? J. of Lightwave Technol., 17 1682-1692 Sept. (1999).

J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, �??Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,�?? J. Quantum Electron. 27 1971 (1991).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, �??Advances in polymer integrated optics,�?? J. Sel. Top. Quantum Electron. 6 54 (2000).

Opt. Express (2)

R.L. Espinola, R.U. Ahmad, F. Pizzuto, M.J. Steel and R.M. Osgood, Jr., �??A study of high-index-contrast 90o waveguide bend structures,�?? Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517</a>

J. Jiang and G. Nordin, �??A rigorous unidirectional method for designing finite aperture diffractive optical elements,�?? Opt. Express 7, 237-242 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237</a>

Opt. Lett. (1)

Phot. Techn. Lett. (4)

John E. Johnson, C.L. Tang, �??Precise determination of turning mirror loss using GaAs/AlGaAs lasers with up to ten 90o intracavity turning mirrors,�?? Phot. Techn. Lett. 4 24-26 (1992).

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet and R. J. Michlak, �??Electron-cyclotron resonance etching of mirrors for ridge-guided lasers,�?? Phot. Techn. Lett. 7 605-607 (1995).

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, �??0.1 dB/cm waveguide losses in singlemode SOI rib waveguides,�?? Phot. Techn. Lett. 8 647 (1996).

Y. Z. Tang, W. H. Wang, etc., �??Integrated waveguide turning mirror in silicon-on insulator,�?? Phot. Techn. Lett. 14 68-70, Jan. (2002).

Other (3)

K. Wada, M. Popovic, S. Akiyama, H. A. Haus, J. Michel, �??Micron-size bending radii in silica-based waveguides,�?? Advanced Semiconductor Lasers and Applications/ Ultraviolet and Blue Lasers and Their Applications /Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001. Digest of the LEOS Summer Topical Meetings, (Copper Mountain, CO USA, 2001), 13-14.

M. V. Klein and T. E. Furtak, Optics, 2nd Ed. (John Wiley and Sons, New York, 1986).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics