Abstract

Blazed gratings have been fabricated using gray-scale X-ray lithography. The gratings have high efficiency, low parasitic light, and high groove quality. The fabrication technique and resist characterization are described. The gratings can be generated over a considerable range of distances from the X-ray mask, thus demonstrating the ability to write gratings on a substrate of effectively arbitrary shape.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Mertz, �??Concentric spectrographs,�?? Appl. Opt. 16, 3122-3124 (1977)
    [CrossRef] [PubMed]
  2. D. R. Lobb, �??Theory of concentric designs for grating spectrometers,�?? Appl. Opt. 33, 2648-2658 (1994)
    [CrossRef] [PubMed]
  3. D. Kwo, G. Lawrence, and M. Chrisp, �??Design of a grating spectrometer from a 1:1 Offner mirror system,�?? SPIE Proc. 818, 275-279 (1987)
  4. P. Mouroulis and M. McKerns, �??Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,�?? Opt. Eng. 39, 808-816 (2000)
    [CrossRef]
  5. P. Mouroulis, R. O. Green, and T. G. Chrien, �??Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,�?? Appl. Opt. 39, 2210-2220 (2000)
    [CrossRef]
  6. F. Reininger, M. Dami, R. Paolinetti, S. Pieri and S. Falugiani, �??Visible infrared mapping spectrometer visible channel (VIMS-V),�?? in Instrumentation in Astronomy Viii, Proc. SPIE 2198, 239-250 (1994)
    [CrossRef]
  7. M. A. Folkman, J. Pearlman, L. B. Liao, and P. J. Jarecke, �??EO1/Hyperion hyperspectral imager design, development, characterization and calibration,�?? in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka Eds., SPIE Proc. 4151, 40-51 (2001)
    [CrossRef]
  8. C. O. Davies, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downs, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, P. A. Reisse, �??Ocean PHILLS hyperspectral imager: design, characterization and calibration,�?? Opt. Express 10, 210-221 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-4-210">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-4-210</a>.
  9. G. Baudin, R. Bessudo, M. A. Cutter, D. Lobb, J. L. Bezy: �??Medium resolution imaging spectrometer (MERIS),�?? in Future European and Japanese Remote-Sensing Sensors and Programs, P. Slater Ed., SPIE vol. 1490, pp. 102-112 (1991)
  10. <a href="http://www.semiconductor.agilent.com/spg/doc/diffract/htmlfiles/VS15.shtml">http://www.semiconductor.agilent.com/spg/doc/diffract/htmlfiles/VS15.shtml</a>
  11. X. Wang, J. R. Leger and R. H. Rediker, �??Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,�?? Appl. Opt. 36, 4660-4665 (1997)
    [CrossRef] [PubMed]
  12. G. P. Behrmann and M. T. Duignan: �??Excimer laser micromachining for rapid fabrication of diffractive optical elements,�?? Appl. Opt. 36, 4666-4674 (1977)
    [CrossRef]
  13. W. X. Yu, X. �??C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong and V. Koudriachov, �??Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by direct laser writing,�?? Opt. Express 10, 443-448 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-443
    [PubMed]
  14. P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, �??Convex grating types for concentric imaging spectrometers,�?? Appl. Opt. 37, 7200-7208 (1998)
    [CrossRef]
  15. F. Scott, �??The production of variable-transmission sinusoidal patterns and other images,�?? Photogr. Sci. & Eng. 9, 86 (1965)
  16. P. Mouroulis, �??Contrast sensitivity in the assessment of visual instruments,�?? in Assessment of Imaging Systems: Visible and Infrared, T. L. Williams Ed., SPIE vol. 274, 202-210 (1981)
  17. Center for Advanced Microstructures and Devices: <a href="http://www.camd.lsu.edu">http://www.camd.lsu.edu</a>
  18. Microchem Corporation, information on resists: <a href="http://www.microchem.com">http://www.microchem.com</a>
  19. Clariant Corporation, information on developer: <a href="http://www.azresist.com">http://www.azresist.com</a>

Appl. Opt. (6)

Opt. Eng. (1)

P. Mouroulis and M. McKerns, �??Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,�?? Opt. Eng. 39, 808-816 (2000)
[CrossRef]

Opt. Express (2)

Photogr. Sci. & Eng. (1)

F. Scott, �??The production of variable-transmission sinusoidal patterns and other images,�?? Photogr. Sci. & Eng. 9, 86 (1965)

Proc. SPIE (1)

F. Reininger, M. Dami, R. Paolinetti, S. Pieri and S. Falugiani, �??Visible infrared mapping spectrometer visible channel (VIMS-V),�?? in Instrumentation in Astronomy Viii, Proc. SPIE 2198, 239-250 (1994)
[CrossRef]

SPIE (2)

G. Baudin, R. Bessudo, M. A. Cutter, D. Lobb, J. L. Bezy: �??Medium resolution imaging spectrometer (MERIS),�?? in Future European and Japanese Remote-Sensing Sensors and Programs, P. Slater Ed., SPIE vol. 1490, pp. 102-112 (1991)

P. Mouroulis, �??Contrast sensitivity in the assessment of visual instruments,�?? in Assessment of Imaging Systems: Visible and Infrared, T. L. Williams Ed., SPIE vol. 274, 202-210 (1981)

SPIE Proc. (2)

M. A. Folkman, J. Pearlman, L. B. Liao, and P. J. Jarecke, �??EO1/Hyperion hyperspectral imager design, development, characterization and calibration,�?? in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka Eds., SPIE Proc. 4151, 40-51 (2001)
[CrossRef]

D. Kwo, G. Lawrence, and M. Chrisp, �??Design of a grating spectrometer from a 1:1 Offner mirror system,�?? SPIE Proc. 818, 275-279 (1987)

Other (4)

<a href="http://www.semiconductor.agilent.com/spg/doc/diffract/htmlfiles/VS15.shtml">http://www.semiconductor.agilent.com/spg/doc/diffract/htmlfiles/VS15.shtml</a>

Center for Advanced Microstructures and Devices: <a href="http://www.camd.lsu.edu">http://www.camd.lsu.edu</a>

Microchem Corporation, information on resists: <a href="http://www.microchem.com">http://www.microchem.com</a>

Clariant Corporation, information on developer: <a href="http://www.azresist.com">http://www.azresist.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Schematic of the mask used for process characterization. The mask was used for stationary exposures of a fixed duration as well as for scanned exposures. The direction of the scan is vertical, along the base of the isosceles triangle. (b) Schematic of the mask used for generating gratings. The period is 20 µm and the base is 30 µm.

Fig 2.
Fig 2.

X-ray spectrum at the beamline. The green (lowest) curve represents the spectrum of the rays incident on the mask.

Fig. 3.
Fig. 3.

Blazed grating profile generated on SU-8 resist.

Fig. 4.
Fig. 4.

Depth vs. dose characteristic of PMMA resist. Squares: developed for 20 s in acetone, diamonds: 10 s in acetone, triangles: 5 min in PMMA developer. Third degree interpolated polynomial curves are also shown.

Fig. 5.
Fig. 5.

Dependence of grating modulation depth on pre-bake temperature for PMGI resist.

Fig. 6.
Fig. 6.

Grating modulation depth vs. development time for PMGI resist (280°C prebake temperature), shown with a quadratic interpolated curve.

Fig. 7.
Fig. 7.

Depth vs. dose for PMGI resist, 170°C pre-bake temperature. A linear interpolated curve is shown. The exact slope of the curve may vary somewhat from one sample to the next, but good linearity was observed on all samples.

Fig. 8.
Fig. 8.

Depth vs. dose for MPGI resist, 280°C pre-bake temperature. A quadratic interpolated curve is shown.

Fig. 9.
Fig. 9.

Scanned image of one triangle from the mask of fig. 1(a). Left: 170°C, right: 280°C pre-bake temperature. Scan speed: 0.1 mm/min. Beam current: Left 38 mA, right: 42 mA.

Fig. 10.
Fig. 10.

X-ray imprints of the two masks used to fabricate gratings. The period is 20 µm.

Fig. 11.
Fig. 11.

Optical photograph of a mask made with improved technique. The period is 9 µm, Au layer thickness ~5 µm.

Fig. 12.
Fig. 12.

Efficiency of three blazed gratings. For grating 1 and grating 2 (triangles and squares), the first order efficiency is shown, and for grating 3 (diamonds) the second-order efficiency.

Fig. 13.
Fig. 13.

Typical profilometer scan of gratings made with the masks of Fig. 10.

Fig. 14.
Fig. 14.

Atomic force microscope scan of grating 3.

Fig. 15.
Fig. 15.

Modulation depth of gratings as a function of distance from the mask for two different development times: 15 min (diamonds) and 25 min (squares).

Metrics