Abstract

Efficient high-power operation of Cr:LiSAF, Cr:LiSGAF, and Cr:LiCAF lasers pumped by broad-area laser diodes is demonstrated. A maximum slope efficiency of 51% and output power of 0.55 W was reached at 1.2 W of absorbed pump power, which is the highest output power to date with broad-area laser diode pumping. With the laser design used the onset of thermal quenching in Cr:LiSAF due to high temperatures was pushed to higher pump powers and good mode matching was achieved.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.M. French, R. Mellish, J.R. Taylor, P.J. Delfyett, L.T. Florez, �??Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,�?? Opt. Lett. 18 (22), 1934-1936 (1993).
    [CrossRef] [PubMed]
  2. I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H.P. Jenssen, R. Szipöcs, �??Prismless passively modelocked femtosecond Cr:LiSGaF laser,�?? Opt. Lett. 21 (15), 1165-1167 (1996).
    [CrossRef] [PubMed]
  3. K.M. Gäbel, P. Ru�?büldt, R. Lebert, A. Valster, �??Diode Pumped Cr 3+:LiCAF fs-Laser,�?? Opt. Commun. 157, 327-334 (1998).
    [CrossRef]
  4. R. Mellish, N.P. Barry, S.C.W. Hyde, R. Jones, P.M.W. French, J.R. Taylor, C.J. Ven der Poel, A. Valster, �??Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,�?? Opt. Lett. 20 (22), 2312-2314 (1995).
    [CrossRef] [PubMed]
  5. D. Parsons-Karavassilis, R. Jones, M.J. Cole, P.M.W. French, J.R. Taylor, �??Diode-pumped all-solid-state ultrafast Cr:LiSGAF laser oscillator-amplifier system applied to laser ablation,�?? Opt. Commun. 175, 389-396 (2000).
    [CrossRef]
  6. A. Isemann, H. Hundertmark, C. Fallnich, �??Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,�?? Appl. Phys. B 74, 299-306 (2002).
    [CrossRef]
  7. L.K. Smith, S.A. Payne, W.L. Kway, L.L. Chase, B.H.T. Chai, �??Investigation of the laser properties of Cr3+:LiSrGaF6,�?? IEEE J. Quantum Electron. 28 (11), 2612-2618 (1992).
    [CrossRef]
  8. F. Balembois, F. Druon, F. Falcoz, P. Georges, A. Brun, �??Comparison between Cr:LiSAF and Cr:LiSGAF for cw diode-pumped Q-Switch operation,�?? OSA TOPS Advanced Solid State Lasers 10, of OSA Proceedings Series (Optical Society of America, D.C., 1997), pp. 170-173.
  9. M. Stalder, M. Bass, B. Chai, �??Thermal quenching of fluorescence in chromium-doped fluoride laser crystals,�?? J. Opt. Soc. Am. B 9 (12), 2271-2273 (1992).
    [CrossRef]
  10. F. Krausz, J. Zehetner, T. Brabec, E. Wintner, �??Elliptic-mode cavity for diode-pumped lasers,�?? Opt. Lett. 16 (19), 1496-1498 (1991).
    [CrossRef] [PubMed]
  11. D. Kopf, J. Aus der Au, U. Keller, G.L. Bona, P. Roentgen, "400-mW continuous-wave diode-pumped Cr:LiSAF laser based on a power-scalable concept,�?? Opt. Lett. 20 (17), 1782-1784 (1995).
    [CrossRef] [PubMed]
  12. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, A. Brun, �??Theoretical and Experimental Investigation of Small-Signal Gain for a Diode-Pumped Q-Switched Cr:LiSAF Laser,�?? IEEE J. Quantum Electron. 33 (2), 269-278 (1997).
    [CrossRef]
  13. S. A. Payne, L. Chase, G. Wilke, �??Optical spectroscopy of the new laser materials, LiSrAlF6:Cr 3+ and LiCaAlF6:Cr 3+,�?? J. Lumin. 44, 167-176 (1989).
    [CrossRef]
  14. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, �??Investigation of the laser properties of Cr 3+ :LiSrGaF6,�?? IEEE J. Quantum Electron. 28 (11), 2612-2618 (1992).
    [CrossRef]
  15. S. A. Payne, L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, "LiCaAlF6:Cr 3+ : A promising new solid-state laser material,�?? IEEE J. Quantum Electron. 24 (11), 2243-2252 (1988).
    [CrossRef]
  16. R. Scheps, �??Cr-doped solid state lasers pumped by visible laser diodes,�?? Opt. Mat. 1, 1-9 (1992).
    [CrossRef]
  17. F. Loesel, C. Horvath, F. Grasbon, M. Jost, M. H. Niemz, �??Selfstarting femtosecond operation and transient dynamics of a diode-endpumped Cr:LiSGaF laser with a semiconductor saturable absorber mirror,�?? Appl. Phys. B 65, 783-787 (1997).
    [CrossRef]
  18. I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H.P. Jenssen, M.A. Noginov, �??Efficient Continuous-Wave TEM00 and Femtosecond Kerr-Lens Mode-Locked Cr:LiSrGaF Laser,�?? Opt. Lett. 21 (3), 204-206 (1996).
    [CrossRef] [PubMed]
  19. I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. Jenssen, �??In Situ measurement of ESA, upconversion, and thermal quenching in Cr:LiSAF and Cr:LiSGAF lasers,�?? Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, Washington, D.C., 1997), pp. 411-414.
  20. P. Beaud, M. C. Richardson, Y.-F. Chen, B. H. T. Chai, �??Optical amplification characteristics of Cr:LiSAF and Cr:LiCAF under flashlamp-pumping,�?? IEEE J. Quantum Electron. 30 (5), 1259-1266 (1994).
    [CrossRef]

Appl. Phys. B

A. Isemann, H. Hundertmark, C. Fallnich, �??Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,�?? Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

F. Loesel, C. Horvath, F. Grasbon, M. Jost, M. H. Niemz, �??Selfstarting femtosecond operation and transient dynamics of a diode-endpumped Cr:LiSGaF laser with a semiconductor saturable absorber mirror,�?? Appl. Phys. B 65, 783-787 (1997).
[CrossRef]

IEEE J. Quantum Electron.

L.K. Smith, S.A. Payne, W.L. Kway, L.L. Chase, B.H.T. Chai, �??Investigation of the laser properties of Cr3+:LiSrGaF6,�?? IEEE J. Quantum Electron. 28 (11), 2612-2618 (1992).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, A. Brun, �??Theoretical and Experimental Investigation of Small-Signal Gain for a Diode-Pumped Q-Switched Cr:LiSAF Laser,�?? IEEE J. Quantum Electron. 33 (2), 269-278 (1997).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, �??Investigation of the laser properties of Cr 3+ :LiSrGaF6,�?? IEEE J. Quantum Electron. 28 (11), 2612-2618 (1992).
[CrossRef]

S. A. Payne, L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, "LiCaAlF6:Cr 3+ : A promising new solid-state laser material,�?? IEEE J. Quantum Electron. 24 (11), 2243-2252 (1988).
[CrossRef]

P. Beaud, M. C. Richardson, Y.-F. Chen, B. H. T. Chai, �??Optical amplification characteristics of Cr:LiSAF and Cr:LiCAF under flashlamp-pumping,�?? IEEE J. Quantum Electron. 30 (5), 1259-1266 (1994).
[CrossRef]

J. Lumin.

S. A. Payne, L. Chase, G. Wilke, �??Optical spectroscopy of the new laser materials, LiSrAlF6:Cr 3+ and LiCaAlF6:Cr 3+,�?? J. Lumin. 44, 167-176 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

K.M. Gäbel, P. Ru�?büldt, R. Lebert, A. Valster, �??Diode Pumped Cr 3+:LiCAF fs-Laser,�?? Opt. Commun. 157, 327-334 (1998).
[CrossRef]

D. Parsons-Karavassilis, R. Jones, M.J. Cole, P.M.W. French, J.R. Taylor, �??Diode-pumped all-solid-state ultrafast Cr:LiSGAF laser oscillator-amplifier system applied to laser ablation,�?? Opt. Commun. 175, 389-396 (2000).
[CrossRef]

Opt. Lett.

Opt. Mat.

R. Scheps, �??Cr-doped solid state lasers pumped by visible laser diodes,�?? Opt. Mat. 1, 1-9 (1992).
[CrossRef]

OSA TOPS

F. Balembois, F. Druon, F. Falcoz, P. Georges, A. Brun, �??Comparison between Cr:LiSAF and Cr:LiSGAF for cw diode-pumped Q-Switch operation,�?? OSA TOPS Advanced Solid State Lasers 10, of OSA Proceedings Series (Optical Society of America, D.C., 1997), pp. 170-173.

Other

I. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. Jenssen, �??In Situ measurement of ESA, upconversion, and thermal quenching in Cr:LiSAF and Cr:LiSGAF lasers,�?? Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, Washington, D.C., 1997), pp. 411-414.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the cw-Colquiriite laser. HR: high reflectivity mirror; PBS: polarizing beam splitter, λ/2: halfwave plate.

Fig. 2.
Fig. 2.

Output powers of Cr:LiSAF for a doping level of 1.5 at% and 3 at% at 2.2% output coupling when pumped from one side at different cooling temperatures. The output power for pumping from both sides for low doping is given for comparison.

Fig. 3.
Fig. 3.

Optimizing the output coupling. The normalized output power for various degrees of output coupling is depicted.

Fig. 4.
Fig. 4.

Comparison of the output power and slope efficiency of Cr:LiSAF, Cr:LiSGAF, and Cr:LiCAF for the same effective absorption length at optimum output coupling.

Tables (2)

Tables Icon

Table 1. Comparison of slope efficiencies from selected publications with this work.

Tables Icon

Table 2. Comparison of slope efficiencies of Cr:LiCAF cw-lasers in dependence on doping level, output coupling and pump source.

Metrics