Abstract

The propagation of femtosecond, multiterawatt, relativistic laser pulses in a transparent plasma is studied. The spatio-temporal dynamics of ultrashort, high-power laser pulses in underdense plasmas differs dramatically from that of long laser beams. We present the results of numerical studies of these dynamics within a model which systematically incorporates finite pulse length effects (i.e., dispersion) along with diffraction and nonlinear refraction in a strongly nonlinear, relativistic regime. New space-time patterns of self-compression, self-focusing and self-phase-modulation, typical of ultrashort, high-intensity laser pulses, are analyzed. The parameters of our numerical simulations correspond to a new class of high-peak-power (> 100 TW), ultrashort-pulsed laser systems, producing pulses with a duration in the 10 – 20 femtosecond range. Spatio-temporal dynamics of these self-effects and underlying physical mechanisms are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. D. Perry and G. Mourou, �??Terawatt to petawatt subpicosecond lasers,�?? Science 64, 917-924 (1994).
    [CrossRef]
  2. G. A. Mourou, C. P. J. Barty and M. D. Perry, �??Ultrahigh-Intensity Lasers: Physics of the Extreme on a Tabletop,�?? Phys. Today 51, 22-28 (1998).
    [CrossRef]
  3. K. Yamakawa, M. Aoyama, T. Kase, Y. Akahane, and, H. Takuma, �??100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,�?? Opt. Lett. 23, 1468-1470 (1998).
    [CrossRef]
  4. K. Yamakawa, C. P. J. Barty, �??Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its application,�?? IEEE J. Se. Top. Quantum Electron. 6, 658-675 (2000).
    [CrossRef]
  5. K. Yamakawa, Y. Akahane, M. Aoyama, Y. Fukuda, N. Inoue, J. Ma, and H. Ueda, �??Status and future developments of ultrahigh intensity lasers at JAERI,�?? in Superstrong Fields in Plasmas, M. Lontano, G. Mourou, O. Svelto, T. Tajima, eds., AIP Conference Proceedings, Vol.611 (American Institute of Physics, Melville, New York, 2002), pp. 385-396.
  6. T. Tajima and G. Mourou, �??Superstrong field science,�?? ibid. pp. 423-436.
  7. P. Sprangle, C.-M. Tang, E. Esarey, �??Relativistic self-focusing of short-pulse radiation beams in plasmas,�?? IEEE Trans. Plasma Sci. PS-15, 145-153 (1987).
    [CrossRef]
  8. G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, �??Self-focusing of short intense pulses in plasmas,�?? Phys. Fluids 30, 526-532 (1987).
    [CrossRef]
  9. E. Esarey, P. Sprangle, J. Krall, A. Ting, �??Self-focusing and guiding of short laser pulses in ionizing gases and plasmas,�?? IEEE J. Quantum Electron. 33, 1879-1914 (1997).
    [CrossRef]
  10. W. B. Mori, �??The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers,�?? IEEE J. Quantum Electron. 33, 1942-1953 (1997).
    [CrossRef]
  11. B. Hafizi, A. Ting, P. Sprangle, and R. F. Hubbard, �??Relativistic focusing and ponderomotive channeling of intense laser beams,�?? Phys. Rev. E 62, 4120-4125 (2000).
    [CrossRef]
  12. P. Spangle, B. Hafizi, and J. R. Peñano, �??Laser pulse modulation instabilities in plasma channels,�?? Phys. Rev. E 61, 4381-4393 (2000).
    [CrossRef]
  13. E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, �??Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels,�?? Phys. Rev. Lett. 84, 3081-3084 (2000).
    [CrossRef] [PubMed]
  14. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, �??Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma,�?? Phys. Fluids B 4, 1935-1942 (1992) .
    [CrossRef]
  15. D. Farina, M. Lontano, I. G. Murusidze, S. V. Mikeladze, �??Hydrodynamic approach to the interaction of a relativistic ultrashort laser pulse with an underdense plasma,�?? Phys. Rev. E 63, 056409(10) (2001).
    [CrossRef]
  16. I. G. Murusidze, G. I. Suramlishvili, M. Lontano, "Spatiotemporal self-focusing and splitting of a femtosecond, multiterawatt, relativistic laser pulse in an underdense plasma," in Superstrong Fields in Plasmas, M. Lontano, G. Mourou, O. Svelto, T. Tajima, eds., AIP Conference Proceedings, Vol.611 (American Institute of Physics, Melville, New York, 2002), pp. 177-184.
  17. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  18. T. Brabec and F. Krausz, �??Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,�?? Phys. Rev. Lett. 78, 3282-3285 (1997).
    [CrossRef]
  19. I. G. Murusidze, L. N. Tsintsadze, �??Generation of large amplitude plasma wakefields with low phase velocities by an intense short laser pulse,�?? J. Plasma Phys. 48, 391-395 (1992).
    [CrossRef]
  20. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (AIP, New York, 1992).
  21. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, D. J. Kane �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Inst. 68, 3277-3295 (1997).
    [CrossRef]
  22. I. Watts, M. Zepf, E. L. Clark, M. Tatarakis, K. Krushelnik, A. E. Dangor, R Alott, R. J. Clarke, D. Neely, P. N. Norreys, �??Measurement of relativistic self-phase-modulation in plasma,�?? Phys. Rev. E 66, 03640 (2002).
    [CrossRef]

IEEE J. Quantum Electron.

E. Esarey, P. Sprangle, J. Krall, A. Ting, �??Self-focusing and guiding of short laser pulses in ionizing gases and plasmas,�?? IEEE J. Quantum Electron. 33, 1879-1914 (1997).
[CrossRef]

W. B. Mori, �??The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers,�?? IEEE J. Quantum Electron. 33, 1942-1953 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Yamakawa, C. P. J. Barty, �??Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its application,�?? IEEE J. Se. Top. Quantum Electron. 6, 658-675 (2000).
[CrossRef]

IEEE Trans. Plasma Sci.

P. Sprangle, C.-M. Tang, E. Esarey, �??Relativistic self-focusing of short-pulse radiation beams in plasmas,�?? IEEE Trans. Plasma Sci. PS-15, 145-153 (1987).
[CrossRef]

J. Plasma Phys.

I. G. Murusidze, L. N. Tsintsadze, �??Generation of large amplitude plasma wakefields with low phase velocities by an intense short laser pulse,�?? J. Plasma Phys. 48, 391-395 (1992).
[CrossRef]

Opt. Lett.

Phys. Fluids

G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, �??Self-focusing of short intense pulses in plasmas,�?? Phys. Fluids 30, 526-532 (1987).
[CrossRef]

Phys. Fluids B

S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, �??Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma,�?? Phys. Fluids B 4, 1935-1942 (1992) .
[CrossRef]

Phys. Rev. E

D. Farina, M. Lontano, I. G. Murusidze, S. V. Mikeladze, �??Hydrodynamic approach to the interaction of a relativistic ultrashort laser pulse with an underdense plasma,�?? Phys. Rev. E 63, 056409(10) (2001).
[CrossRef]

B. Hafizi, A. Ting, P. Sprangle, and R. F. Hubbard, �??Relativistic focusing and ponderomotive channeling of intense laser beams,�?? Phys. Rev. E 62, 4120-4125 (2000).
[CrossRef]

P. Spangle, B. Hafizi, and J. R. Peñano, �??Laser pulse modulation instabilities in plasma channels,�?? Phys. Rev. E 61, 4381-4393 (2000).
[CrossRef]

I. Watts, M. Zepf, E. L. Clark, M. Tatarakis, K. Krushelnik, A. E. Dangor, R Alott, R. J. Clarke, D. Neely, P. N. Norreys, �??Measurement of relativistic self-phase-modulation in plasma,�?? Phys. Rev. E 66, 03640 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, �??Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels,�?? Phys. Rev. Lett. 84, 3081-3084 (2000).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, �??Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,�?? Phys. Rev. Lett. 78, 3282-3285 (1997).
[CrossRef]

Phys. Today

G. A. Mourou, C. P. J. Barty and M. D. Perry, �??Ultrahigh-Intensity Lasers: Physics of the Extreme on a Tabletop,�?? Phys. Today 51, 22-28 (1998).
[CrossRef]

Rev. Sci. Inst.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, D. J. Kane �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Inst. 68, 3277-3295 (1997).
[CrossRef]

Science

M. D. Perry and G. Mourou, �??Terawatt to petawatt subpicosecond lasers,�?? Science 64, 917-924 (1994).
[CrossRef]

Other

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (AIP, New York, 1992).

I. G. Murusidze, G. I. Suramlishvili, M. Lontano, "Spatiotemporal self-focusing and splitting of a femtosecond, multiterawatt, relativistic laser pulse in an underdense plasma," in Superstrong Fields in Plasmas, M. Lontano, G. Mourou, O. Svelto, T. Tajima, eds., AIP Conference Proceedings, Vol.611 (American Institute of Physics, Melville, New York, 2002), pp. 177-184.

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

K. Yamakawa, Y. Akahane, M. Aoyama, Y. Fukuda, N. Inoue, J. Ma, and H. Ueda, �??Status and future developments of ultrahigh intensity lasers at JAERI,�?? in Superstrong Fields in Plasmas, M. Lontano, G. Mourou, O. Svelto, T. Tajima, eds., AIP Conference Proceedings, Vol.611 (American Institute of Physics, Melville, New York, 2002), pp. 385-396.

T. Tajima and G. Mourou, �??Superstrong field science,�?? ibid. pp. 423-436.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The sequence of contour plots shows the evolution of the laser field amplitude | A | (in mc 2 / e units) during its propagation through an underdense plasma. The initial Gaussian pulse has A 0=3, w 0 k p =25, k p ν g τ0=2.5 . | A | is mapped in (z′, r′) plane, where z′=k p (z - ν gt) and r′=kpr are the dimensionless longitudinal (in the moving frame) and radial coordinates in kp1 units, respectively.Propagation distances into the plasma are shown in the right upper and lower corners of each plot in units of the Rayleigh length and in micrometers, respectively.

Fig. 2.
Fig. 2.

(a) - The effective width w eff and the effective duration τ eff of the laser pulse are shown vs. the propagation distance (in micrometers). Underlined quantities refer to their normalized values. (b) - Dynamics of the peak values of the squared amplitudes of the laser vector potential and of the electric field (normalized to their initial values) during the pulse propagation.

Fig. 3.
Fig. 3.

The axial (longitudinal) asymmetry of the plasma response is illustrated. (a) - Surface plot of the electron density within the focal region. The corresponding on-axis profile of the density (magenta) along with the intensity profile (blue) is shown in (b). (c) - Axial profiles of the relativistic factor,γ (green), the square of the longitudinal momentum, pz2 (magenta), and the square of the amplitude of the laser vector potential |A|2, (blue).

Fig. 4.
Fig. 4.

The contour plots of the laser amplitude | A|, (a, e), and of the frequency shift δω (normalized to the central laser frequency) (b, f), are shown for two propagation distances. Note the large red shifted regions at the front of the pulse as well as the modulated frequency shifts at the trailing edge. (c) and (g) show the corresponding axial profiles of δω (blue) along with the laser intensity profiles (magenta). (d) and (h) show the radial variations of the frequency shifts, which typically develop at the back of the pulse.

Fig. 5.
Fig. 5.

Modulations of the pulse’s temporal profile for two subsequent propagation distances (a, b). The pulse’s head self-focuses with a conventional bell-shaped radial profile (c), while its trailing half develops a radial pattern with minimum intensity at the center surrounded by a ring in which the intensity is concentrated (d).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L ω p ω ε 1 ,
A = 1 2 ( x ± i y ) A ( r , t ) exp ( i k z i ω t ) + c . c . ,
2 i k A ζ 2 v g 2 A τ ζ d 2 A τ 2 + 2 A =
k p 2 ( β g [ ( 1 + φ ) 2 ( 1 + A 2 ) γ g 2 ] 1 2 1 ) A ,
2 φ τ 2 = ω p 2 ( β g γ g ) 2 ( β g ( 1 + φ ) [ ( 1 + φ ) 2 ( 1 + A 2 ) γ g 2 ] 1 2 1 ) .

Metrics