Abstract

Sub-25 fs pulses from a multipass amplifier system have been spectrally broadened in a hollow fiber up to 250 nm. Using a combination of a prism compressor and an improved acousto-optic programmable dispersive filter (AOPDF), we were able to compress the pulses close to their transform limit. Under optimized conditions we achieved pulses with a duration of 8 fs and a peak power up to 9 GW.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, W. S. Warren, �??Feedback quantum control of molecular electronic population transfer,�?? Chem. Phys. Lett. 280, 151-158 (1997).
    [CrossRef]
  2. T. C. Weinacht, J. Ahn, P.H. Buckbaum, �??Controlling the shape of a quantum wavefunction,�?? Nature 397, 233-235 (1999).
    [CrossRef]
  3. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, F. Krausz, �??X-ray Pulses Approaching the Attosecond Frontier,�?? Science 291, 1923-1927 (2001).
    [CrossRef] [PubMed]
  4. Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, �??Generation of Coherent X-rays in the Water Window Using 5-Femtosecond Laser Pulses,�?? Science 278, 661-664 (1997).
    [CrossRef]
  5. R. Bartels, Sterling Backus, Ivan Christov, Henry Kapteyn, M. Murnane, �??Attosecond time-scale feedback control of coherent X-ray generation,�?? Chem. Phys. 267, 277-289 (2001).
    [CrossRef]
  6. T. B. Norris, �??Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,�?? Opt. Lett. 17, 1009-1011 (1992).
    [CrossRef] [PubMed]
  7. B. A. Richmann, S. E. Bisson, R. Trebino, E. Sidick, A. Jacobson, �??All-prism achromatic phase matching for tunabel second-harmonic generation,�?? Appl. Opt. 38, 3316-3323 (1999).
    [CrossRef]
  8. C.H. Brito Cruz, P. C. Becker, R. L. Fork, C. V. Shank, �??Phase correction of femtosecond optical pulses using a combination of prisms and gratings,�?? Opt. Lett. 13, 123-125 (1988).
    [CrossRef]
  9. M. Hentschel, S. Uemura, Z. Cheng, S. Sartania, Ch. Spielmann, F. Krausz, �??High-dynamic-range pulsefront steepening of amplified femtosecond pulses by third-order dispersion,�?? Appl. Phys. B 68, 145-148 (1999).
    [CrossRef]
  10. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, �??Generation of 0.1-TW 5-fs optical pulses at a 1-kHz rate,�?? Opt. Lett. 22, 1562-1564 (1997).
    [CrossRef]
  11. R. Szipöcs, K. Ferenc, Ch. Spielmann, F. Krausz, �??Chiped multilayer coatings for broadband dispersion control in femtosecond lasers,�?? Opt. Lett. 19, 201-203 (1994).
    [CrossRef] [PubMed]
  12. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, M. Motzkus, �??Programmable amplitude and phase-modulated femtosecond laser pulses in the mid-infrared,�?? Opt. Lett. 15, 131-133 (1988).
  13. C. J. Bardeen, Q. Wang, C. V. Shank, �??Selective Excitational of Vibrational Wave Packet motion Using Chirped Pulses,�?? Phys. Rev. Lett. 75, 3410-3413 (1995).
    [CrossRef] [PubMed]
  14. A. Efimov, D. H. Reitze, �??Programmable dispersion compensation and pulse shaping in a 26-fs chirpedpulse amplifier,�?? Opt. Lett. 23, 1612-1614 (1998).
    [CrossRef]
  15. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, M. Yamashita, �??Programmable Chirp Compensation for 6-fs Pulse Generation with a Prism-Pair-Formed Pulse Shaper,�?? IEEE J. Quantum Electron. 36, 893-899 (2000).
    [CrossRef]
  16. V. V. Lozovoy, M. Dantus, �??Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation,�?? Chem. Phys. Lett. 351, 213-221 (2002).
    [CrossRef]
  17. M. D. Skeldon, �??Optical pulse-shaping system based on an electro-optic modulator driven by an aperturecoupled stripline electrical-waveform generator,�?? J. Opt. Soc. Am. B 19, 2423-2426 (2002).
    [CrossRef]
  18. E. Zeek, K. Bartels, M. Murnane, H. Kapteyn, S. Backus, G. Vdovin, �??Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,�?? Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  19. T. Brixner, G. Gerber, �??Femtosecond polarization pulse shaping,�?? Opt. Lett. 26, 557-559 (2001)
    [CrossRef]
  20. D. Kaplan, P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV France 12, 69-75 (2002).
    [CrossRef]
  21. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  22. C. Iaconis, I. A. Walmsey, �??Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses,�?? IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Hentschel, S. Uemura, Z. Cheng, S. Sartania, Ch. Spielmann, F. Krausz, �??High-dynamic-range pulsefront steepening of amplified femtosecond pulses by third-order dispersion,�?? Appl. Phys. B 68, 145-148 (1999).
[CrossRef]

Chem. Phys. (1)

R. Bartels, Sterling Backus, Ivan Christov, Henry Kapteyn, M. Murnane, �??Attosecond time-scale feedback control of coherent X-ray generation,�?? Chem. Phys. 267, 277-289 (2001).
[CrossRef]

Chem. Phys. Lett. (2)

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, W. S. Warren, �??Feedback quantum control of molecular electronic population transfer,�?? Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

V. V. Lozovoy, M. Dantus, �??Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation,�?? Chem. Phys. Lett. 351, 213-221 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, M. Yamashita, �??Programmable Chirp Compensation for 6-fs Pulse Generation with a Prism-Pair-Formed Pulse Shaper,�?? IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

C. Iaconis, I. A. Walmsey, �??Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses,�?? IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

D. Kaplan, P. Tournois, "Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping," J. Phys. IV France 12, 69-75 (2002).
[CrossRef]

Nature (1)

T. C. Weinacht, J. Ahn, P.H. Buckbaum, �??Controlling the shape of a quantum wavefunction,�?? Nature 397, 233-235 (1999).
[CrossRef]

Opt. Lett. (9)

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, M. Motzkus, �??Programmable amplitude and phase-modulated femtosecond laser pulses in the mid-infrared,�?? Opt. Lett. 15, 131-133 (1988).

F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575-577 (2000).
[CrossRef]

E. Zeek, K. Bartels, M. Murnane, H. Kapteyn, S. Backus, G. Vdovin, �??Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,�?? Opt. Lett. 25, 587-589 (2000).
[CrossRef]

C.H. Brito Cruz, P. C. Becker, R. L. Fork, C. V. Shank, �??Phase correction of femtosecond optical pulses using a combination of prisms and gratings,�?? Opt. Lett. 13, 123-125 (1988).
[CrossRef]

T. B. Norris, �??Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,�?? Opt. Lett. 17, 1009-1011 (1992).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferenc, Ch. Spielmann, F. Krausz, �??Chiped multilayer coatings for broadband dispersion control in femtosecond lasers,�?? Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, �??Generation of 0.1-TW 5-fs optical pulses at a 1-kHz rate,�?? Opt. Lett. 22, 1562-1564 (1997).
[CrossRef]

A. Efimov, D. H. Reitze, �??Programmable dispersion compensation and pulse shaping in a 26-fs chirpedpulse amplifier,�?? Opt. Lett. 23, 1612-1614 (1998).
[CrossRef]

T. Brixner, G. Gerber, �??Femtosecond polarization pulse shaping,�?? Opt. Lett. 26, 557-559 (2001)
[CrossRef]

Phys. Rev. Lett. (1)

C. J. Bardeen, Q. Wang, C. V. Shank, �??Selective Excitational of Vibrational Wave Packet motion Using Chirped Pulses,�?? Phys. Rev. Lett. 75, 3410-3413 (1995).
[CrossRef] [PubMed]

Science (2)

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, F. Krausz, �??X-ray Pulses Approaching the Attosecond Frontier,�?? Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, �??Generation of Coherent X-rays in the Water Window Using 5-Femtosecond Laser Pulses,�?? Science 278, 661-664 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Layout of experimental setup. O: oscillator, P1: Nd+3:YVO4 pump laser for the oscillator, P2: Nd:YLF pump laser for the CPA Laser, CPA: Chirp pulse amplification stage, M1, M3, M4: silver coated curved mirrors, R1=-2000 mm; R3=-800 mm, R4=-200 mm. M2, M5, M6, m1–m6 are plane mirrors. SF57: 5 cm glass block, P1–P6: Brewster angle fused silica prisms. TeO2+COMPUTER CONTROL: the DAZZLER system.

Fig. 2.
Fig. 2.

Measured transmission curve of the AOPDF for two different filter pre-settings.

Fig. 3.
Fig. 3.

Fiber output (brown) and the diffracted spectrum after the prism compressor (red).

Fig. 4.
Fig. 4.

Spectral behavior of the compressed pulses: spectral intensity (solid red line) and the spectral phase (dashed pink line)

Fig. 5.
Fig. 5.

Calculated pulse shape for the shortest obtained pulses with duration of 8 fs. The intensity (solid red line) is displayed on a logarithmic scale. The phase is (dashed pink line) nearly flat over the whole range and shows only several π-phase jumps, if the electric field envelope changes its sign. In the insert, the part of the pulse is shown with linear scale.

Tables (1)

Tables Icon

Table 1. Overview of the major dispersion contribution in the experimental setup

Metrics