Abstract

An optical multiplexer-demultiplexer based on an index-confined photonic band gap waveguide is proposed. The dropping of electromagnetic waves having a given frequency or a certain frequency band is obtained via a phase-shifted grating obtained by breaking the uniform period sequence to include a defect layer. The selective filtering properties of the proposed structure are simulated by means of a computer code relying on a bidirectional beam propagation method based on the method of lines.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals. Molding the Flow of Light (Princeton University Press, 1995).
  2. A.D??Orazio, M.De Sario, V.Petruzzelli, F.Prudenzano: ??Numerical modeling of photonic band gap waveguiding structures,?? Recent Research Developments in Optics, S.G.Pandalai Editor, 2002.
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, ??Channel drop tunneling through localized states,?? Phys. Rev. Lett. 80, 960??963 (1998).
    [CrossRef]
  4. C. Jin, S. Han, X. Meng, B. Cheng, and D.Zhang, ??Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,?? J. Appl. Phys. 91, 4771??4773 (2002
    [CrossRef]
  5. H.Kosaka,T.Kawashima, A.Tomita, M.Notomi, T.Tamamura, T.Sato and S.Kawakami, ??Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,?? Appl. Phys. Lett. 74, 1370-1372 (1999).
    [CrossRef]
  6. S. Noda, A. Chutinan, and M. Imada, ??Trapping and emission of photons by a single defect in a photonic bandgap structure,?? Nature 407, 608??610 (2000).
    [CrossRef] [PubMed]
  7. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, ??Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,?? Opt. Lett. 25, 1502??1504 (2000).
    [CrossRef]
  8. M. Koshiba, ??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,?? J. Lightwave Technol. 19, 1970??1975 (2001).
    [CrossRef]
  9. A. Sharkawy, S. Shi, and D. W. Prather, ??Multichannel wavelength division multiplexing with photonic crystals,?? Appl. Opt. 40, 2247??2252 (2001).
    [CrossRef]
  10. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, ??Investigation of localized coupled-cavity modes in twodimensional photonic band gap structures,?? IEEE J. Quantum Electron. 38, 837??843 (2002).
    [CrossRef]
  11. S.Y. Lin, J.G. Fleming, ??A three-dimensional Optical Photonic Crystal,?? J. Lightwave Technol. 17, 1944-1947 (1999).
    [CrossRef]
  12. R.Kashyap, Fiber Bragg Gratings, (Academic press, San Diego, 1999).
  13. G.I. Stegeman, D.G. Hall, ??Modulated index structure,?? J. Opt. Soc. Am. A 7, 1387-1398 (1996).
    [CrossRef]
  14. C.R. Giles, ??Lightwave applications of fiber Bragg gratings,?? J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  15. R.W.Ziolkowski, T.Liang, ??Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing,?? Opt. Lett. 22, 1033-1035 (1997).
    [CrossRef] [PubMed]
  16. C.F. Lam, R.B. Vrijen, P.P.L. Chang-Chien, D.F. Sievenpiper, E. Yablonovitch, ??A tunable wavelength demultiplexer using logarithmic filter chains,?? J. Lightwave Technol. 16, 1657-1662 (1998).
    [CrossRef]
  17. R.Zengerle, O.Leminger, ??Phase shifted Bragg-grating filters with improved transmission characteristics,?? J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]
  18. L.Wei, J.W.Y.Lit, ??Phase-shifted Bragg Grating Filters with symmetrical structures,?? J. Lightwave Technol. 15, 1405-1410 (1997).
    [CrossRef]
  19. A. D'Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano: Bidirectional Beam Propagation Method based on the Method of Lines for the Analysis of Photonic Band Gap Structures, accepted for publication in Optical and Quantum Electronics, 2002.
  20. S.Helfert, R.Pregla, ??Efficient analysis of periodic structures,?? J. Lightwave Technol. 16, 1694-1702 (1998).
    [CrossRef]
  21. G. Murtuza, J. M. Senior, ??Analytical tools for the assessment of optical crosstalk in WDM systems,?? IEE Colloquium on, Digest 1997/036, 16/1-16/4, (1997).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H.Kosaka,T.Kawashima, A.Tomita, M.Notomi, T.Tamamura, T.Sato and S.Kawakami, ??Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,?? Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, ??Investigation of localized coupled-cavity modes in twodimensional photonic band gap structures,?? IEEE J. Quantum Electron. 38, 837??843 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Jin, S. Han, X. Meng, B. Cheng, and D.Zhang, ??Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,?? J. Appl. Phys. 91, 4771??4773 (2002
[CrossRef]

J. Lightwave Technol. (7)

C.F. Lam, R.B. Vrijen, P.P.L. Chang-Chien, D.F. Sievenpiper, E. Yablonovitch, ??A tunable wavelength demultiplexer using logarithmic filter chains,?? J. Lightwave Technol. 16, 1657-1662 (1998).
[CrossRef]

R.Zengerle, O.Leminger, ??Phase shifted Bragg-grating filters with improved transmission characteristics,?? J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

L.Wei, J.W.Y.Lit, ??Phase-shifted Bragg Grating Filters with symmetrical structures,?? J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

C.R. Giles, ??Lightwave applications of fiber Bragg gratings,?? J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

S.Y. Lin, J.G. Fleming, ??A three-dimensional Optical Photonic Crystal,?? J. Lightwave Technol. 17, 1944-1947 (1999).
[CrossRef]

S.Helfert, R.Pregla, ??Efficient analysis of periodic structures,?? J. Lightwave Technol. 16, 1694-1702 (1998).
[CrossRef]

M. Koshiba, ??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,?? J. Lightwave Technol. 19, 1970??1975 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

S. Noda, A. Chutinan, and M. Imada, ??Trapping and emission of photons by a single defect in a photonic bandgap structure,?? Nature 407, 608??610 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, ??Channel drop tunneling through localized states,?? Phys. Rev. Lett. 80, 960??963 (1998).
[CrossRef]

Other (5)

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals. Molding the Flow of Light (Princeton University Press, 1995).

A.D??Orazio, M.De Sario, V.Petruzzelli, F.Prudenzano: ??Numerical modeling of photonic band gap waveguiding structures,?? Recent Research Developments in Optics, S.G.Pandalai Editor, 2002.

R.Kashyap, Fiber Bragg Gratings, (Academic press, San Diego, 1999).

G. Murtuza, J. M. Senior, ??Analytical tools for the assessment of optical crosstalk in WDM systems,?? IEE Colloquium on, Digest 1997/036, 16/1-16/4, (1997).

A. D'Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano: Bidirectional Beam Propagation Method based on the Method of Lines for the Analysis of Photonic Band Gap Structures, accepted for publication in Optical and Quantum Electronics, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Layout of the IC-1D-PBG filter.

Fig. 2.
Fig. 2.

Reflectance (green line) and transmittance (red line) spectra for defect waveguide length L=1.97 µm. Reflectance (blue line) for the N=32 period waveguide without defect.

Fig. 3.
Fig. 3.

Useful channel number Nc,u as a function of the defect waveguide L length.

Fig. 4.
Fig. 4.

Reflectance (green line) and transmittance (red line) spectra for defect waveguide length L=35 µm. Nc,u=8 useful channels are evident in the wavelength range from 1.26 µm to 1.36 µm.

Fig. 5.
Fig. 5.

Contour lines of the three-dimensional evolution of the electric field Ey (color scale in V/m) component for defect waveguide length L=35 µm: λ=1299 nm and R=0.10, T=0.90.

Fig. 6.
Fig. 6.

Contour lines of the three-dimensional evolution of the electric field Ey (color scale in V/m) component for defect waveguide length L=35 µm: λ=1300 nm and R=0.55, T=0.45.

Fig. 7.
Fig. 7.

Patterns of the input (blue line), reflected (red line) and transmitted (green line) electric field Ey component for λ=1299 nm and R=0.10, T=0.90.

Fig. 8.
Fig. 8.

Patterns of the input (blue line), reflected (red line) and transmitted (green line) electric field Ey component for λ=1300 nm and R=0.55, T=0.45.

Tables (1)

Tables Icon

Table 1. Characteristic parameters of the index confined photonic band gap demultiplexer as a function of the defect waveguide L length.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d 2 φ d u 2 Q φ = 0
d 2 φ ¯ d u 2 λ 2 φ ¯ = 0
φ ¯ ( u ) = F e λ u + B e λ u
λ B 2 ( n t w 2 + n g w 1 )

Metrics