Abstract

We introduce a new method for generating an array of programmable optical tweezers based on the principle of the Shack-Hartmann wave front sensor. In this approach, a lenslet array divides a laser beam into multiple point sources that are subsequently imaged onto the sample plane of an inverted microscope. This results in a matrix of tightly focused beams used for local confinement and manipulation of micron-sized dielectric particles in an aqueous solution. Using a spatial light-modulating device, the phase profile of the laser beam is computer-encoded providing for controlled spatial deflections of the trapping beams.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288 (1986).
  2. R. V. Shack and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).
  3. S. M. Block, H. C. Blair, and H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature 338, 514 (1989).
    [CrossRef]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, �??Stretching DNA with optical tweezers,�?? Biophysics J. 72, 1335 (1997).
  5. A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
    [CrossRef]
  6. J. G. Allen, A. Vankevics, D. Wormell, and L. Schmutz, �??Digital wavefront sensor for astronomical image compensation,�?? Proc. SPIE 739, 124, (1987).
  7. J. D. Mansell, et al., �??Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,�?? Appl. Opt. 40, 366 (2001),
  8. R. K. Tyson, Principles of Adaptive Optics 2nd Ed. (Academic Press, 1998).
  9. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A 11, 1949 (1994).
  10. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, "Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608 (1999).
  11. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
  12. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles,�?? Opt. Express 10, 1550 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>.
  13. Y. Ogura, K. Kagawa, and J. Tanida,"Optical manipulation of microscopic objects by means of verticalcavity surface-emitting laser array sources,�?? Appl. Opt. 40, 5430 (2001).
  14. G. D. Love, J. V. Major, and A. Purvis, �??Liquid-crystal prisms for tip-tilt adaptive optics,�?? Opt. Lett. 19, 1170 (1994).
  15. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, �??Dependence of optical properties on the device and material parameters in liquid crystal microlenses,�?? Jpn. J. Appl. Phys. 35, 4668 (1996).
    [CrossRef]
  16. S. Sinzinger and J. Jahns. Microoptics (Wiley-VCH, 1991).
  17. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145 (1999).
  18. J. P. Hoogenboom, et al., "Patterning surfaces with colloidal particles using optical tweezers,�?? Appl. Phys. Lett. 80, 4828 (2002).
    [CrossRef]
  19. R. Dumke, et al., "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. P. Hoogenboom, et al., "Patterning surfaces with colloidal particles using optical tweezers,�?? Appl. Phys. Lett. 80, 4828 (2002).
[CrossRef]

Biophys. J. (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145 (1999).

Biophysics J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, �??Stretching DNA with optical tweezers,�?? Biophysics J. 72, 1335 (1997).

J. Opt. Soc. Am (1)

R. V. Shack and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, �??Dependence of optical properties on the device and material parameters in liquid crystal microlenses,�?? Jpn. J. Appl. Phys. 35, 4668 (1996).
[CrossRef]

Nature (1)

S. M. Block, H. C. Blair, and H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature 338, 514 (1989).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. Dumke, et al., "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Proc. SPIE (1)

J. G. Allen, A. Vankevics, D. Wormell, and L. Schmutz, �??Digital wavefront sensor for astronomical image compensation,�?? Proc. SPIE 739, 124, (1987).

Science (1)

A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
[CrossRef]

Other (2)

R. K. Tyson, Principles of Adaptive Optics 2nd Ed. (Academic Press, 1998).

S. Sinzinger and J. Jahns. Microoptics (Wiley-VCH, 1991).

Supplementary Material (2)

» Media 1: MPG (1738 KB)     
» Media 2: MPG (1888 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics