Abstract

We introduce a new method for generating an array of programmable optical tweezers based on the principle of the Shack-Hartmann wave front sensor. In this approach, a lenslet array divides a laser beam into multiple point sources that are subsequently imaged onto the sample plane of an inverted microscope. This results in a matrix of tightly focused beams used for local confinement and manipulation of micron-sized dielectric particles in an aqueous solution. Using a spatial light-modulating device, the phase profile of the laser beam is computer-encoded providing for controlled spatial deflections of the trapping beams.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. R. V. Shack and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).
  3. S. M. Block, H. C. Blair, and H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature 338, 514 (1989).
    [CrossRef] [PubMed]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, �??Stretching DNA with optical tweezers,�?? Biophysics J. 72, 1335 (1997).
    [CrossRef]
  5. A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
    [CrossRef] [PubMed]
  6. J. G. Allen, A. Vankevics, D. Wormell, and L. Schmutz, �??Digital wavefront sensor for astronomical image compensation,�?? Proc. SPIE 739, 124, (1987).
  7. J. D. Mansell, et al., �??Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,�?? Appl. Opt. 40, 366 (2001),
    [CrossRef]
  8. R. K. Tyson, Principles of Adaptive Optics 2nd Ed. (Academic Press, 1998).
  9. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A 11, 1949 (1994).
    [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, "Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608 (1999).
    [CrossRef]
  11. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
    [CrossRef] [PubMed]
  12. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles,�?? Opt. Express 10, 1550 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>.
    [CrossRef] [PubMed]
  13. Y. Ogura, K. Kagawa, and J. Tanida,"Optical manipulation of microscopic objects by means of verticalcavity surface-emitting laser array sources,�?? Appl. Opt. 40, 5430 (2001).
    [CrossRef]
  14. G. D. Love, J. V. Major, and A. Purvis, �??Liquid-crystal prisms for tip-tilt adaptive optics,�?? Opt. Lett. 19, 1170 (1994).
    [CrossRef] [PubMed]
  15. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, �??Dependence of optical properties on the device and material parameters in liquid crystal microlenses,�?? Jpn. J. Appl. Phys. 35, 4668 (1996).
    [CrossRef]
  16. S. Sinzinger and J. Jahns. Microoptics (Wiley-VCH, 1991).
  17. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145 (1999).
    [CrossRef] [PubMed]
  18. J. P. Hoogenboom, et al., "Patterning surfaces with colloidal particles using optical tweezers,�?? Appl. Phys. Lett. 80, 4828 (2002).
    [CrossRef]
  19. R. Dumke, et al., "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. P. Hoogenboom, et al., "Patterning surfaces with colloidal particles using optical tweezers,�?? Appl. Phys. Lett. 80, 4828 (2002).
[CrossRef]

Biophys. J.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145 (1999).
[CrossRef] [PubMed]

Biophysics J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, �??Stretching DNA with optical tweezers,�?? Biophysics J. 72, 1335 (1997).
[CrossRef]

J. Opt. Soc. Am

R. V. Shack and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, �??Dependence of optical properties on the device and material parameters in liquid crystal microlenses,�?? Jpn. J. Appl. Phys. 35, 4668 (1996).
[CrossRef]

Nature

S. M. Block, H. C. Blair, and H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature 338, 514 (1989).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dumke, et al., "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Proc. SPIE

J. G. Allen, A. Vankevics, D. Wormell, and L. Schmutz, �??Digital wavefront sensor for astronomical image compensation,�?? Proc. SPIE 739, 124, (1987).

Science

A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
[CrossRef] [PubMed]

Other

R. K. Tyson, Principles of Adaptive Optics 2nd Ed. (Academic Press, 1998).

S. Sinzinger and J. Jahns. Microoptics (Wiley-VCH, 1991).

Supplementary Material (2)

» Media 1: MPG (1738 KB)     
» Media 2: MPG (1888 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram for the proposed Shack-Hartmann-based optical tweezing methodology. The resulting xyz-deflectable beam spots are scaled onto the sample plane of a microscope.

Fig. 2.
Fig. 2.

Shack-Hartmann-type multiple-beam optical tweezers. Spatial Fourier-transforms of programmable phase gratings are imaged onto the tweezer plane for parallel particle trapping with fine positioning modality. In this case, the computer addresses the SLM in four quadrants for independent encoding of grating period and orientation. At the tweezer plane, this corresponds to a control in the magnitude and direction of each trapping beam deflection.

Fig. 3.
Fig. 3.

(MPEG, 1,739KB) Simultaneous trapping of four microspheres (encircled in the first frame) using a 2×2 Shack-Hartmann optical tweezer system. The white cross indicates one microsphere located at the bottom surface. During displacement of the sample stage, the out-of-focus particle moved to the left while the trapped microspheres remained in their respective trapping positions.

Fig. 4.
Fig. 4.

Wrapping of a linear phase function into an equivalent blazed phase grating (Modulo-2π). This blazing technique also applies in two-dimensions where ϕ=ϕ (x, y).

Fig. 5.
Fig. 5.

An example of computer-generated gray level pattern forming a 2×2 array of blazed phase gratings on the SLM. This defines the horizontal and vertical deflections of each of the four optical traps.

Fig. 6.
Fig. 6.

(MPEG, 1,889KB) Parallel trapping of polystyrene microspheres with independent deflection control. Shown at the right is a sequence of magnified images of one trapped particle (encircled in the left frame) illustrating different directions of deflection (magnitude ~ 1.5 µm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ r ij = λ f 1 2 π ( ϕ r ) ij
θ ij = tan 1 [ ( ϕ y ) ij ( ϕ x ) ij ] ,
Δ r ij = λ f l T ij .

Metrics