Abstract

In this paper, the optical performance degradation of a liquid crystal (LC) cell due to the instability of pre-tilt angle and polar anchoring strength of the alignment surface of liquid crystal devices is explored. Under accelerated thermal treatment, changes in both the pre-tilt angle and polar anchoring strength are observed. The impacts of these changes are modeled for both twist nematic (TN) and electrically controlled birefringence (ECB) cells. Through this modeling, we find that a stable surface is very important to the long term performance of liquid crystal devices for the telecommunication applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Patel et al., �??Liquid crystal and grating-based multiple-wavelength cross-connect switch,�?? IEEE Photon. Technol. Lett. 7, 514-516 (1995).
    [CrossRef]
  2. Al R. Ranalli, Bradley A. Scott, John P. Kondis, �??Liquid crystal-based wavelength selectable crossconnect,�?? Proc. of ECOC 1, 68-69 (1999).
  3. T. J. Scheffer and J. Nehring, �??Accureate determination of liquid crystal tilt bias angles,�?? J. Appl. Phys. 48, 1783 (1977).
    [CrossRef]
  4. Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, �??Nemativc polar anchoring strength measured by electric field techniques,�?? J. Appl. Phys. 86, 4199 (1999).
    [CrossRef]
  5. Rui-Qing Ma, �??Polymer networks formed in liquid crystal and their applications,�?? Kent State University Dissertation, (2000).
  6. P. Yeh, �??Exrtended Jones Matric Method,�?? J. Opt. Soc. Am. 72, 507 (1982).
    [CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Patel et al., �??Liquid crystal and grating-based multiple-wavelength cross-connect switch,�?? IEEE Photon. Technol. Lett. 7, 514-516 (1995).
[CrossRef]

J. Appl. Phys. (2)

T. J. Scheffer and J. Nehring, �??Accureate determination of liquid crystal tilt bias angles,�?? J. Appl. Phys. 48, 1783 (1977).
[CrossRef]

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, �??Nemativc polar anchoring strength measured by electric field techniques,�?? J. Appl. Phys. 86, 4199 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. of ECOC (1)

Al R. Ranalli, Bradley A. Scott, John P. Kondis, �??Liquid crystal-based wavelength selectable crossconnect,�?? Proc. of ECOC 1, 68-69 (1999).

Other (1)

Rui-Qing Ma, �??Polymer networks formed in liquid crystal and their applications,�?? Kent State University Dissertation, (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustration of homogenous alignment of LC molecules.

Fig. 2.
Fig. 2.

Result of pre-tilt angle measurement.

Fig. 3.
Fig. 3.

Result of polar anchoring strength measurement.

Fig. 4.
Fig. 4.

Modeling result of the impact of the pre-tilt angle change on TN LCD.

Fig. 5.
Fig. 5.

Modeling result of the impact of the polar anchoring strength change on TN LCD.

Fig. 6.
Fig. 6.

Modeling result of the impact of the pre-tilt angle change on ECB LCD.

Fig. 7.
Fig. 7.

Modeling result of the impact of the polar anchoring strength change on ECB LCD.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F = 0 t f bulk dz + f s ( 0 ) + f s ( t )
f bulk = 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n × n ) 2 + 1 2 K 33 ( n × × n ) 2 + 1 2 ( D E ) ,
δ f bulk δ θ = f bulk θ d dz ( f bulk ( dz ) ) = 0 .
f s = 1 2 W sin 2 ( θ θ p ) ,
f bulk ( dz ) = ± f s θ .
Transmission ( dB ) = 10 log 10 P out P in .

Metrics