Abstract

We numerically investigate the effects of the active fiber length on the tunability of erbium-doped fiber ring lasers for the cases of with and without pair-induced quenching (PIQ). The numerical results are confirmed by experiments. We have found that the tuning range shifts from C-band to L-band with an increase in the active fiber length. A maximum tuning range of over 100 nm, covering both the C- and L-band, can be achieved with an optimized active fiber length. It is also found that the PIQ is favorable for L-band lasing though it reduces the output power and degrades the power flatness. Using these findings, a novel method employing active fiber length switching is proposed to extend the tuning range of the laser, which is only limited by the free spectral range (FSR) of the tunable filter. A large tuning range of 102 nm is obtained using a tunable fiber Fabry-Perot filter with an FSR of 75 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. L. Scrivener, E. J. Tarbox, and P. D. Maton, �??Narrow linewidth tunable operation of Er3+-doped singlemode fiber laser,�?? Electron. Lett. 25, 549-550 (1989).
    [CrossRef]
  2. J. L. Zyskind, J. W. Sulhoff, J. Stone, D. J. Digiovanni, L. W. Stulz, H. M. Presby, A. Piccirilli, P. E. Pramayon, �??Electrically tunable, diode-pumped Erbium-doped fiber ring laser with fiber Fabry-Perot etalon,�?? Electron. Lett. 27, 1950-1951 (1991).
    [CrossRef]
  3. Th. Pfeiffer, H. Schmuck, and H. Bülow, �??Output power characteristics of Erbium-doped fiber ring laser,�?? IEEE Photon. Technol. Lett. 4, 847-849 (1992).
    [CrossRef]
  4. M. Mignon, E. Desurvire, �??An analytical model for the determination of optimal output reflectivity and fiber length in Erbium-doped fiber lasers,�?? IEEE Photon. Technol. Lett. 4, 850-852 (1992).
    [CrossRef]
  5. S. Yamashita, and M. Nishihara, �??Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,�?? IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
    [CrossRef]
  6. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, �??A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,�?? IEEE J. Sel. Top. Quantum Electron. 7, 22- 29 (2001).
    [CrossRef]
  7. H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, �??1.58-m band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,�?? J. Lightwave Technol. 17, 490-496 (1999).
    [CrossRef]
  8. M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, �??Broadband and gain-flattened amplifier composed of a 1.55m-band and a 1.58m-band Er3+ doped fiber amplifier in a parallel configuration,�?? Electron. Lett. 33, 710-711 (1997).
    [CrossRef]
  9. P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, �??Concentration-dependent upconversion in Er3+- doped fiber amplifiers: experiments and modeling,�?? IEEE Photon. Technol. Lett. 3, 996-998 (1991).
    [CrossRef]
  10. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, �??Modeling of pair-induced quenching in erbium-doped silicate fibers,�?? IEEE Photon. Technol. Lett. 5, 73-75 (1993).
    [CrossRef]
  11. J. Nilsson, B. Jaskorzynska, and P. Blixt, �??Performance reduction and design modification of erbium-doped fiber amplifiers resulting form pair-induced quenching,�?? IEEE Photon. Technol. Lett. 5, 1427-1429 (1993).
    [CrossRef]
  12. P. Myslinski, D. Nguyen, and J. Chrostowski, �??Effects of concentration on the performance of erbiumdoped fiber amplifiers,�?? J. Lightwave Technol. 15, 112-120 (1997).
    [CrossRef]
  13. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. Digiovanni, �??Effects of concentration and clusters in erbium-doped fiber lasers,�?? Opt. Lett. 18, 2014-2016 (1993).
    [CrossRef] [PubMed]
  14. Xinyong Dong, N. Q. Ngo, P. Shum, B.-O. Guan, H.-Y Tam, Xiaoyi Dong, �??Concentration-induced nonuniform power in tunable erbium-doped fiber laser,�?? Opt. Lett. (to be published in Vol. 29, No. 4, 2004).
    [CrossRef] [PubMed]
  15. Xinyong Dong, N. Q. Ngo, P. Shum, H.-Y Tam, Xiaoyi Dong, �??Linear cavity erbium-doped fiber laser with over 100nm tuning range,�?? Opt. Express 11, 1689-1694 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1689">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1689</a>.
    [CrossRef] [PubMed]

Electron. Lett. (3)

P. L. Scrivener, E. J. Tarbox, and P. D. Maton, �??Narrow linewidth tunable operation of Er3+-doped singlemode fiber laser,�?? Electron. Lett. 25, 549-550 (1989).
[CrossRef]

J. L. Zyskind, J. W. Sulhoff, J. Stone, D. J. Digiovanni, L. W. Stulz, H. M. Presby, A. Piccirilli, P. E. Pramayon, �??Electrically tunable, diode-pumped Erbium-doped fiber ring laser with fiber Fabry-Perot etalon,�?? Electron. Lett. 27, 1950-1951 (1991).
[CrossRef]

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, �??Broadband and gain-flattened amplifier composed of a 1.55m-band and a 1.58m-band Er3+ doped fiber amplifier in a parallel configuration,�?? Electron. Lett. 33, 710-711 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Yamashita, and M. Nishihara, �??Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,�?? IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
[CrossRef]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, �??A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,�?? IEEE J. Sel. Top. Quantum Electron. 7, 22- 29 (2001).
[CrossRef]

IEEE Photon. (1)

M. Mignon, E. Desurvire, �??An analytical model for the determination of optimal output reflectivity and fiber length in Erbium-doped fiber lasers,�?? IEEE Photon. Technol. Lett. 4, 850-852 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Th. Pfeiffer, H. Schmuck, and H. Bülow, �??Output power characteristics of Erbium-doped fiber ring laser,�?? IEEE Photon. Technol. Lett. 4, 847-849 (1992).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, �??Concentration-dependent upconversion in Er3+- doped fiber amplifiers: experiments and modeling,�?? IEEE Photon. Technol. Lett. 3, 996-998 (1991).
[CrossRef]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, �??Modeling of pair-induced quenching in erbium-doped silicate fibers,�?? IEEE Photon. Technol. Lett. 5, 73-75 (1993).
[CrossRef]

J. Nilsson, B. Jaskorzynska, and P. Blixt, �??Performance reduction and design modification of erbium-doped fiber amplifiers resulting form pair-induced quenching,�?? IEEE Photon. Technol. Lett. 5, 1427-1429 (1993).
[CrossRef]

J. Lightwave Technol. (2)

P. Myslinski, D. Nguyen, and J. Chrostowski, �??Effects of concentration on the performance of erbiumdoped fiber amplifiers,�?? J. Lightwave Technol. 15, 112-120 (1997).
[CrossRef]

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, �??1.58-m band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,�?? J. Lightwave Technol. 17, 490-496 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. Digiovanni, �??Effects of concentration and clusters in erbium-doped fiber lasers,�?? Opt. Lett. 18, 2014-2016 (1993).
[CrossRef] [PubMed]

Xinyong Dong, N. Q. Ngo, P. Shum, B.-O. Guan, H.-Y Tam, Xiaoyi Dong, �??Concentration-induced nonuniform power in tunable erbium-doped fiber laser,�?? Opt. Lett. (to be published in Vol. 29, No. 4, 2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed tunable erbium-doped fiber ring laser.

Fig. 2.
Fig. 2.

Simulation results (a) without PIQ, and (b) with PIQ at different EDF lengths of 2.5 (---), 5.0 (---), 8.0 (---), 12.5 (---), and 30 m (---).

Fig. 3.
Fig. 3.

Measured output powers at different EDF lengths of 2.5 (▪), 5.0 (+), 8.0 (∙), 12.5 (Ж), and 30 m (▲).

Fig. 4.
Fig. 4.

Proposed laser configuration to extend the tuning range by EDF length switching.

Fig. 5.
Fig. 5.

Measured output power of the proposed laser design using active fiber length switching.

Metrics