Abstract

We describe two different methods that exploit the intrinsic mobility properties of cavity solitons to realize periodic motion, suitable in principle to provide soliton-based, all-optical clocking or synchronization. The first method relies on the drift of solitons in phase gradients: when the holding beam corresponds to a doughnut mode (instead of a Gaussian as usually) cavity solitons undergo a rotational motion along the annulus of the doughnut. The second makes additional use of the recently discovered spontaneous motion of cavity solitons induced by the thermal dynamics, it demonstrates that it can be controlled by introducing phase or amplitude modulations in the holding beam. Finally, we show that in presence of a weak 2D phase modulation, the cavity soliton, under the thermally induced motion, performs a random walk from one maximum of the phase profile to another, always escaping from the temperature minimum generated by the soliton itself (Fugitive Soliton).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
    [Crossref]
  2. N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).
  3. G. S. McDonald and W. J. Firth “Spatial solitary wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
    [Crossref]
  4. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
    [Crossref] [PubMed]
  5. For review, see L. A. Lugiato, “Introduction to the Special Issue on Cavity Solitons,” IEEE J. Quant. Electron. 39, 193 (2003)
    [Crossref]
  6. For review, see W. J. Firth and G. K. Harkness, “Existence, Stability and Properties of Cavity Solitons,” in “Spatial Solitons,” Springer Series in Optical Sciences Vol. 82, eds. S. TrilloW. Torruellas, pp. 343–358 (Springer Velag, 2002).
  7. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
    [Crossref] [PubMed]
  8. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
    [Crossref]
  9. D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
    [Crossref]
  10. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
    [Crossref]
  11. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
    [Crossref]
  12. L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
    [Crossref]
  13. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
    [Crossref] [PubMed]
  14. L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
    [Crossref]
  15. A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
    [Crossref]
  16. G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
    [Crossref]
  17. I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).
  18. D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
    [Crossref]
  19. L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  20. L. Allen, S. M. Barnett, and M. J. Padgett, “Optical angular Momentum,” Institute of Physics Publishing, Bristol, (2003).
  21. B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
    [Crossref]
  22. B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
    [Crossref]
  23. W. J. Firth and G. Harkness, “Cavity Solitons,” Asian J. Phys. 7, 665–677 (1998).
  24. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
    [Crossref]
  25. T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
    [Crossref]
  26. G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
    [Crossref]

2003 (2)

For review, see L. A. Lugiato, “Introduction to the Special Issue on Cavity Solitons,” IEEE J. Quant. Electron. 39, 193 (2003)
[Crossref]

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

2002 (4)

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
[Crossref]

G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
[Crossref]

2001 (3)

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
[Crossref]

2000 (1)

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

1999 (2)

1998 (2)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

W. J. Firth and G. Harkness, “Cavity Solitons,” Asian J. Phys. 7, 665–677 (1998).

1997 (2)

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
[Crossref]

1996 (1)

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref] [PubMed]

1994 (1)

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[Crossref] [PubMed]

1992 (1)

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

1990 (3)

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

G. S. McDonald and W. J. Firth “Spatial solitary wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
[Crossref]

1988 (1)

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).

1983 (1)

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[Crossref]

Allen, L.

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

L. Allen, S. M. Barnett, and M. J. Padgett, “Optical angular Momentum,” Institute of Physics Publishing, Bristol, (2003).

Azoulay, R.

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

Balle, S.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Barland, S.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, “Optical angular Momentum,” Institute of Physics Publishing, Bristol, (2003).

Beijersbergen, M.W.

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Brambilla, M.

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

Firth, W. J.

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
[Crossref]

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
[Crossref]

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

W. J. Firth and G. Harkness, “Cavity Solitons,” Asian J. Phys. 7, 665–677 (1998).

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref] [PubMed]

G. S. McDonald and W. J. Firth “Spatial solitary wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
[Crossref]

For review, see W. J. Firth and G. K. Harkness, “Existence, Stability and Properties of Cavity Solitons,” in “Spatial Solitons,” Springer Series in Optical Sciences Vol. 82, eds. S. TrilloW. Torruellas, pp. 343–358 (Springer Velag, 2002).

Giudici, M.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Harkness, G.

W. J. Firth and G. Harkness, “Cavity Solitons,” Asian J. Phys. 7, 665–677 (1998).

Harkness, G. K.

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

For review, see W. J. Firth and G. K. Harkness, “Existence, Stability and Properties of Cavity Solitons,” in “Spatial Solitons,” Springer Series in Optical Sciences Vol. 82, eds. S. TrilloW. Torruellas, pp. 343–358 (Springer Velag, 2002).

Jaeger, R.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Khodova, G. V.

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).

Knoedl, T.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Kuszelewicz, R.

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

Lederer, F.

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
[Crossref]

Lefever, R.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[Crossref] [PubMed]

Lugiato, L. A.

For review, see L. A. Lugiato, “Introduction to the Special Issue on Cavity Solitons,” IEEE J. Quant. Electron. 39, 193 (2003)
[Crossref]

G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
[Crossref]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

Maggipinto, T.

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
[Crossref]

Mandel, P.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[Crossref] [PubMed]

McDonald, G. S.

McLaughlin, D. W.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[Crossref]

McSloy, J. M.

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
[Crossref]

Michaelis, D.

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
[Crossref]

Michel, J. C.

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

Miller, M.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Moloney, J. V.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[Crossref]

Newell, A. C.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[Crossref]

Oppo, G-L.

G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
[Crossref]

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

Oudar, J. L.

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

Padgett, M. J.

L. Allen, S. M. Barnett, and M. J. Padgett, “Optical angular Momentum,” Institute of Physics Publishing, Bristol, (2003).

Perrini, I.

Perrini, I. M.

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

Peschel, U.

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
[Crossref]

Prati, F.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

Rosanov, N. N.

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).

Scroggie, A. J.

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
[Crossref]

G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
[Crossref]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref] [PubMed]

Sfez, B.

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

Skryabin, D. V.

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

Spinelli, L.

G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
[Crossref]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

Spreuw, R. J. C.

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Tarenghi, M.

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

Tissoni, G.

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
[Crossref]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083 (1999).
[Crossref]

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,” J. Opt. Soc. Am. B 16, 2095 (1999).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

Tlidi, M.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[Crossref] [PubMed]

Tredicce, J. R.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Yulin, A.

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

Appl. Phys. Lett. (2)

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,” Appl. Phys. Lett. 57, 324 (1990).
[Crossref]

B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R. Azoulay, “External-beam switching in monolithic bistable GaAs quantum well etalons,” Appl. Phys. Lett. 57, 1849 (1990).
[Crossref]

Asian J. Phys. (1)

W. J. Firth and G. Harkness, “Cavity Solitons,” Asian J. Phys. 7, 665–677 (1998).

Eur. Phys. J. D (1)

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257–266 (2001).
[Crossref]

IEEE J. Quant. Electron. (1)

For review, see L. A. Lugiato, “Introduction to the Special Issue on Cavity Solitons,” IEEE J. Quant. Electron. 39, 193 (2003)
[Crossref]

J. Opt. Soc. Am. B (3)

Nature (1)

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger,“Cavity Solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[Crossref] [PubMed]

Opt. Ex. (1)

G. Tissoni, L. Spinelli, and L. A. Lugiato,“Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Ex. 10, 1009 (2002).
[Crossref]

Opt. Spectrosc. (1)

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).

Phys Rev E (2)

T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,” Phys Rev E 62, 8726–8739 (2000).
[Crossref]

G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,” Phys Rev E 63 066209-1/15 (2001).
[Crossref]

Phys. Rev. A (4)

L. Allen, M.W. Beijersbergen, R. J. C. Spreuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
[Crossref]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998) and references quoted therein.
[Crossref]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[Crossref]

Phys. Rev. E (2)

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-propelled cavity solitons in semiconductor microcavities,” Phys. Rev. E 66, 036607 (2002).
[Crossref]

D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel, and F. Lederer, “Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,” Phys. Rev. E 64, 56618-1-9 (2001).
[Crossref]

Phys. Rev. Lett. (4)

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[Crossref]

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[Crossref] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref] [PubMed]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth,“Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042 (1997).
[Crossref]

submitted to J. Opt. B (1)

I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, “Thermal effects and cavity solitons in passive semiconductor microresonators,” submitted to J. Opt. B (2003).

Other (2)

For review, see W. J. Firth and G. K. Harkness, “Existence, Stability and Properties of Cavity Solitons,” in “Spatial Solitons,” Springer Series in Optical Sciences Vol. 82, eds. S. TrilloW. Torruellas, pp. 343–358 (Springer Velag, 2002).

L. Allen, S. M. Barnett, and M. J. Padgett, “Optical angular Momentum,” Institute of Physics Publishing, Bristol, (2003).

Supplementary Material (5)

» Media 1: MPG (545 KB)     
» Media 2: MPG (981 KB)     
» Media 3: MPG (140 KB)     
» Media 4: MPG (249 KB)     
» Media 5: MPG (1289 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Gauss-Laguerre mode (TEM*10) that we used as holding beam (a). The movie (b) shows the rotatory motion of CS due to the phase profile e + of the holding beam. Passive configuration, without thermal effects. Parameters are: κ -1=10ps, γ1=10ns, I=0, η=0.25; β=1.6, d=0.2, θ=-3, C=40, Δ=-1. [Media 1]

Fig. 2.
Fig. 2.

Active configuration without thermal effects: steady-state curve. Parameters are: C=0.45, θ=-2, α=5, I=2, η=0, β=0 and d=0.052.

Fig. 3.
Fig. 3.

Gauss-Laguerre mode (TEM*01) that we used as holding beam (a). The movie (b) shows the rotatory motion of 2 CSs due to the phase profile e- of the holding beam. Active configuration, without thermal effects. Temporal parameters are: κ -1=10ps-1=1ns. Other parameters are as in Fig. 2. [Media 2]

Fig. 4.
Fig. 4.

Active configuration with thermal effects: steady-state curve. Parameters are: κ -1=10ps,γ1=1ns,γth1 =1µs, DT =1, d=0.1, Δ=3, θ 0=-18.5, Σ=80, Z≃1.2·10-4, P≃8.1·10-8, I=1.43.

Fig. 5.
Fig. 5.

1D phase profile of the holding beam (a). The movie (b) shows the dynamics of two CSs. Parameters are as in Fig. 4. [Media 3]

Fig. 6.
Fig. 6.

The profile of the input holding beam with ring-shaped pure amplitude gradient is shown in (a). The movie (b) illustrates the motion of CS. Parameters are as in Fig. 4. [Media 4]

Fig. 7.
Fig. 7.

2D phase profile of the holding beam (a). The movie shows the time evolution of field intensity (b) and temperature (c). Parameters are as in Fig. 4. [Media 5]

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E t = κ [ ( 1 + η + i θ ) E + E I 2 C i Θ ( N 1 ) E + i 2 E ] ,
N t = γ [ N + β N 2 I + ( N 1 ) E 2 d 2 N ] ,
E t = κ [ ( 1 + i θ ( T ) ) E E I i χ nl ( N , T , ω 0 ) E i 2 E ] ,
N t = γ [ N Im ( χ nl ( N , T , ω 0 ) ) E 2 I d 2 N ] ,
T t = γ th [ ( T 1 ) D T 2 T ] + γ Z N + γ P I 2 ,
θ = θ 0 λ ( T 1 ) ,
λ = 4 π T 0 n Γ n T ,
E I ( x , y ) = E I ( 0 ) [ 1 + i ( ε 1 cos K x + ε 2 cos K y ) ] ,
E I ( x , y ) E I ( 0 ) exp ( i φ ( x , y ) ) , φ ( x , y ) = ε 1 cos K x + ε 2 cos K y ,

Metrics