Abstract

We report quantum communications channel using photon number correlated twin beams. The twin beams are generated from a nondegenerate optical parametric oscillator, and the photon number difference is used to encode the signal. The bit error rate of our system will be 0.067 by using the twin beams comparing with 0.217 by using the coherent state as the signal carrier.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, �??Observation of quantum noise reduction on twin laser beams,�?? Phys. Rev. Lett. 59, 2555-2558 (1987).
    [CrossRef] [PubMed]
  2. L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, �??Generation of squeezed states by parametric down conversion,�?? Phys. Rev. Lett. 57, 2520-2524 (1986).
    [CrossRef] [PubMed]
  3. Y. Zhang, H. Wang, X.Y. Li, J.T. Jing, C.D. Xie, and K.C. Peng, �??Experimental generation of bright twomode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,�?? Phys. Rev. A 62, 023813 (2000)
    [CrossRef]
  4. J. R. Gao, F. Y. Cui, C. Y. Xue, C. D. Xie, K. C. Peng, �??Generation and application of twin beams from an optical parametric oscillator including an a-cut KTP crystal,�?? Opt. Lett. 23, 870-872 (1998).
    [CrossRef]
  5. H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porzio, C. D. Xie, and K. C. Peng, �??Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter,�?? Phys. Rev. Lett. 82, 1414-1417 (1999).
    [CrossRef]
  6. H. B. Wang, Z. H. Zhai, S. K. Wang, and J. R. Gao, �??Generation of frequency-tunable twin beams and its application in sub-shot noise FM spectroscopy,�?? Europhys. Lett. 64, 15-21 (2003)
    [CrossRef]
  7. M. Vasilyev, S. K. Choi, P. Kumar, G. M. D�??Ariano, �??Tomographic measurement of joint photon statistics of the twin-beam quantum state,�?? Phys. Rev. Lett. 84, 2354-2357 (2000).
    [CrossRef] [PubMed]
  8. D. T. Smithey, M.Beck, M.G. Raymer, and A. Faridani, �??Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,�?? Phys. Rev. Lett. 70, 1244-1247 (1993).
    [CrossRef] [PubMed]
  9. D. T. Smithey, M. Beck, M. Belsley, and M. G. Raymer, �??Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,�?? Phys. Rev. Lett. 69, 2650-2653 (1992).
    [CrossRef] [PubMed]
  10. Y. Zhang, K. Kasai, and M. Watanabe, �??Investigation of the photon-number statistics of twin beams by direct detection,�?? Opt. Lett. 27, 1244-1246 (2002).
    [CrossRef]
  11. Y. Zhang, K. Kasai, and M. Watanabe, "Experimental investigation of the intensity fluctuation joint probability and conditional distributions of the twin-beam quantum state," Opt. Express 11, 14-19 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-14">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-14</a>.
    [CrossRef] [PubMed]
  12. J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, �??Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams,�?? Phys. Rev. Lett. 91, 213601 (2003).
    [CrossRef] [PubMed]
  13. A. C. Funk and M. G. Raymer, �??Quantum key distribution using nonclassical photon-number correlations in macroscopic light pulses,�?? Phys. Rev. A 65, 042307 (2002).
    [CrossRef]
  14. The basic concepts of noise theory used in this paper can be found, for example, in L. Mandel and E. Wolf, Optical coherence and Quantum optics (Cambridge University Press, New York, 1995).
  15. R. Namiki, and T. Hirano, �??Security of quantum cryptography using balanced homodyne detection,�?? Phys. Rev. A 67, 022308 (2003).
    [CrossRef]
  16. K. Kasai and M. Watanabe, �??Generation of twin photon beams from a thermally self-locked semimonolithic optical parametric oscillator and its application,�?? in proceeding of 7th International Conference on Squeezed States and Uncertainty Relations, Boston, U.S.A., June 4-8, 2001.
  17. M. B. Gray, D. A. Shaddock, C. C. Harb, and H.-A. Bachor, �??Photodetector designs for low-noise, broadband, and high-power applications,�?? Rev. Sci. Instrum. 69, 3755-3762, (1998).
    [CrossRef]

Europhys. Lett. (1)

H. B. Wang, Z. H. Zhai, S. K. Wang, and J. R. Gao, �??Generation of frequency-tunable twin beams and its application in sub-shot noise FM spectroscopy,�?? Europhys. Lett. 64, 15-21 (2003)
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (3)

A. C. Funk and M. G. Raymer, �??Quantum key distribution using nonclassical photon-number correlations in macroscopic light pulses,�?? Phys. Rev. A 65, 042307 (2002).
[CrossRef]

R. Namiki, and T. Hirano, �??Security of quantum cryptography using balanced homodyne detection,�?? Phys. Rev. A 67, 022308 (2003).
[CrossRef]

Y. Zhang, H. Wang, X.Y. Li, J.T. Jing, C.D. Xie, and K.C. Peng, �??Experimental generation of bright twomode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,�?? Phys. Rev. A 62, 023813 (2000)
[CrossRef]

Phys. Rev. Lett. (7)

H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porzio, C. D. Xie, and K. C. Peng, �??Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter,�?? Phys. Rev. Lett. 82, 1414-1417 (1999).
[CrossRef]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, �??Observation of quantum noise reduction on twin laser beams,�?? Phys. Rev. Lett. 59, 2555-2558 (1987).
[CrossRef] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, �??Generation of squeezed states by parametric down conversion,�?? Phys. Rev. Lett. 57, 2520-2524 (1986).
[CrossRef] [PubMed]

M. Vasilyev, S. K. Choi, P. Kumar, G. M. D�??Ariano, �??Tomographic measurement of joint photon statistics of the twin-beam quantum state,�?? Phys. Rev. Lett. 84, 2354-2357 (2000).
[CrossRef] [PubMed]

D. T. Smithey, M.Beck, M.G. Raymer, and A. Faridani, �??Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,�?? Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

D. T. Smithey, M. Beck, M. Belsley, and M. G. Raymer, �??Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,�?? Phys. Rev. Lett. 69, 2650-2653 (1992).
[CrossRef] [PubMed]

J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, �??Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams,�?? Phys. Rev. Lett. 91, 213601 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. B. Gray, D. A. Shaddock, C. C. Harb, and H.-A. Bachor, �??Photodetector designs for low-noise, broadband, and high-power applications,�?? Rev. Sci. Instrum. 69, 3755-3762, (1998).
[CrossRef]

Other (2)

K. Kasai and M. Watanabe, �??Generation of twin photon beams from a thermally self-locked semimonolithic optical parametric oscillator and its application,�?? in proceeding of 7th International Conference on Squeezed States and Uncertainty Relations, Boston, U.S.A., June 4-8, 2001.

The basic concepts of noise theory used in this paper can be found, for example, in L. Mandel and E. Wolf, Optical coherence and Quantum optics (Cambridge University Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the experimental setup. PBS: polarizing beam splitter; D1 and D2: detector; G: low noise electronic amplifier; M1 and M2: mirror.

Fig. 2
Fig. 2

Measured distributions of photoelectron difference of twin beams and coherent light in correct and incorrect basis. Solid line: theoretical prediction; Symbols: experimental result; Circles: for twin beams in correct basis; Squares: for coherent light in correct basis; Triangles: in wrong basis

Tables (1)

Tables Icon

Table 1. Measured mean and standard derivation of different bases when the system is implemented with coherent state and twin beams.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

bit value = { 1 if n > N 0 0 if n < N 0 inconclusi ve otherwise ,
p ( n ) = 1 2 π δ e ( n n ) 2 2 δ 2 + 1 2 π δ e ( n + n ) 2 2 δ 2 .
P ( N 0 , n , δ ) = N 0 p ( n ) d n + N 0 p ( n ) d n
= 1 2 { erfc [ 1 2 δ ( N 0 n ) ] + erfc [ 1 2 δ ( N 0 + n ) ] } ,
erfc ( z ) = 2 π z e t 2 d t .
BER = 1 P ( N 0 , n , δ ) N 0 p 1 2 π δ e ( n + n ) 2 2 δ 2 d n
= 1 2 P ( N 0 , n , δ ) erfc [ 1 2 δ ( N 0 + n ) ] .

Metrics