Abstract

In this paper we present significant progress on the fabrication of small-core lead-silicate holey fibers. The glass used in this work is SF57, a commercially available, highly nonlinear Schott glass. We report the fabrication of small core SF57 fibers with a loss as low as 2.6 dB/m at 1550 nm, and the fabrication of fibers with a nonlinear coefficient as high as 640 W-1km-1. We demonstrate the generation of Raman solitons at ~1550 nm in a short length of such a fiber which highlights the fact that the group velocity dispersion can be anomalous at these wavelengths despite the large normal material dispersion of the glass around 1550nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold," IEEE Photon. Technol. Lett. 15, 440-442 (2003).
    [CrossRef]
  2. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>
    [CrossRef] [PubMed]
  3. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
    [CrossRef]
  4. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, and D. J. Richardson, "Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber," presented at OFC 2003, Atlanta, Georgia, paper PD03 (Postdeadline).
  5. H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K. Frampton, R. Moore, D. J. Richardson, and T. M. Monro, "Highly nonlinear bismuth-oxide-based glass holey fiber," presented at OFC 2004, Los Angeles, California, paper ThA4.
  6. V. Kumar, A. K. George, J. C. Knight, and P. S. Russell, "Tellurite hotonic crystal fiber," Opt. Express 11, 2641-2645 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641.</a>
    [CrossRef] [PubMed]
  7. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  8. S. R. Friberg and P. W. Smith, "Nonlinear Optical-Glasses for Ultrafast Optical Switches," IEEE J. Quantum Electron. 23, 2089-2094 (1987).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Inc., 1995).
  10. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers," presented at OFC 2002, Anaheim, California, 19-21 March 2002, paper FA1-1 (Postdeadline).
  11. E. M. Vogel, M. J. Weber, and D. M. Krol, "Nonlinear Optical Phenomena in Glass," Phys. Chem. Glasses 32, 231-254 (1991).
  12. S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, "Measurement of iscosity of multi-component glasses in the wide range for fiber drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).
  13. Schott Glass Catalogue, 2003.
  14. L. Poladian, N. A. Issa, and T. M. Monro, "Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry," Opt. Express 10, 449-454 (2002), <a href="http://www opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449.">http://www opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449</a>.
    [CrossRef] [PubMed]
  15. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  16. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. GrunerNielsen, and O. A. Levring, "Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]

Electron. Lett.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

IEEE J. Quantum Electron.

S. R. Friberg and P. W. Smith, "Nonlinear Optical-Glasses for Ultrafast Optical Switches," IEEE J. Quantum Electron. 23, 2089-2094 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold," IEEE Photon. Technol. Lett. 15, 440-442 (2003).
[CrossRef]

J. Jpn. Inst. Met.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, "Measurement of iscosity of multi-component glasses in the wide range for fiber drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).

J. Lightwave Technol.

OFC 2002

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers," presented at OFC 2002, Anaheim, California, 19-21 March 2002, paper FA1-1 (Postdeadline).

OFC 2003

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, and D. J. Richardson, "Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber," presented at OFC 2003, Atlanta, Georgia, paper PD03 (Postdeadline).

OFC 2004

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K. Frampton, R. Moore, D. J. Richardson, and T. M. Monro, "Highly nonlinear bismuth-oxide-based glass holey fiber," presented at OFC 2004, Los Angeles, California, paper ThA4.

Opt. Express

Opt. Lett.

Phys. Chem. Glasses

E. M. Vogel, M. J. Weber, and D. M. Krol, "Nonlinear Optical Phenomena in Glass," Phys. Chem. Glasses 32, 231-254 (1991).

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Inc., 1995).

Schott Glass Catalogue, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Cross section through extruded preform, (b) SEM image of cane cross section, (c) SEM image of holey fiber cross section.

Fig. 2.
Fig. 2.

(a) Nonlinearity measurement over 0.37m of the first fiber; inset shows the mode profile of this fiber; (b) dispersion profile of the SF57 HFs with core diameters of 1.7 µm and 2.0 µm.

Fig. 3.
Fig. 3.

Traces of the Raman soliton spectra at the output of the HF for various levels of input pulse energies.

Fig. 4.
Fig. 4.

(a) Optical spectrum and (b) autocorrelation trace of the 2.5 GHz wavelength-shifted pulses measured at the output of the 0.37m of SF57 HF.

Metrics