Abstract

We have observed long-range trapping with a single-beam gradient force optical trap. 6 to 10 µm polystyrene beads that are initially ≈100 µm away from the trap-center can be pulled into the trap-center. Particle-tracking enables us to determine the trajectory of a bead as it moves towards the trap-center and map out a capture zone inside which trapping can occur.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. J.-G. Meiners and S. R. Quake, �??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phy. Rev. Lett. 84, 5014-5017 (2000).
    [CrossRef]
  3. S. M. Block, C. L. Asbury, J. W. Shaevitz, and M. J. Lang, �??Probing the kinesin reaction cycle with a 2D optical force clamp,�?? Proc. Natl. Acad. Sci. 100, 2351-2356 (2003).
    [CrossRef] [PubMed]
  4. R. W. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, �??Quantitative measurements of force and displacement using an optical trap,�?? Biophys. J. 70, 1813-1822 (1996).
    [CrossRef] [PubMed]
  5. A. Ashkin, �??Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,�?? Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  6. K. Svoboda and S. M. Block, �??Biological Applications of Optical Forces,�?? Annu. Rev. Biophys. Biomed. Struct. 23, 247-285 (1994).
    [CrossRef]
  7. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arit, W. Sibbett, and K. Dholakia,, �??Creation and Manipulation of Three-Dimensional Optically Trapped Structures,�?? Science 296, 1101-1103 (2002).
    [CrossRef] [PubMed]
  8. S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda and Mara Prentiss, �??Inexpensive optical tweezers for undergraduate laboratories,�?? Am. J. Phys. 67, 26-35 (1999).
    [CrossRef]
  9. http://rsb.info.nih.gov/ij/

Am. J. Phys. (1)

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda and Mara Prentiss, �??Inexpensive optical tweezers for undergraduate laboratories,�?? Am. J. Phys. 67, 26-35 (1999).
[CrossRef]

Annu. Rev. Biophys. Biomed. Struct. (1)

K. Svoboda and S. M. Block, �??Biological Applications of Optical Forces,�?? Annu. Rev. Biophys. Biomed. Struct. 23, 247-285 (1994).
[CrossRef]

Biophys. J. (2)

R. W. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, �??Quantitative measurements of force and displacement using an optical trap,�?? Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

A. Ashkin, �??Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,�?? Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phy. Rev. Lett. (1)

J.-G. Meiners and S. R. Quake, �??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phy. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

S. M. Block, C. L. Asbury, J. W. Shaevitz, and M. J. Lang, �??Probing the kinesin reaction cycle with a 2D optical force clamp,�?? Proc. Natl. Acad. Sci. 100, 2351-2356 (2003).
[CrossRef] [PubMed]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arit, W. Sibbett, and K. Dholakia,, �??Creation and Manipulation of Three-Dimensional Optically Trapped Structures,�?? Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Other (1)

http://rsb.info.nih.gov/ij/

Supplementary Material (1)

» Media 1: MOV (2186 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental Setup

Fig. 2.
Fig. 2.

Observation of long-range trapping. The green asterisk marks the position of the bead when the video in Fig. 3 starts.

Fig. 3.
Fig. 3.

(2.1 Mb) Long-range trapping of a 10 µm polystyrene bead with 54 mW of laser power.

Fig. 4.
Fig. 4.

Long-range trapping trajectories of two 10 µm beads, with 54 mW and 18 mW laser power. The trajectory at 54 mW corresponds to the positions of the bead in Fig. 3.

Fig. 5.
Fig. 5.

Capture zone for long-range trapping with 29 mW laser power. A trapping-trajectory taken at 36 mW laser power is superimposed to show how the edge of the zone corresponds to the position where long-range trapping starts at a particular radial position. The inset (not to scale) illustrates how the capture zone is within a region illuminated by the trapping laser.

Metrics