Abstract

We propose a novel scheme for suppressing stimulated Brillouin scattering in optical fibers. The scheme makes use of a single or a sampled Bragg grating fabricated within the fiber used for transmitting intense Q-switched pulses. The grating is designed such that the spectrum of the Stokes pulse generated through stimulated Brillouin scattering falls entirely within its stop band. We show numerically that 15-ns pulses with 2-kW peak power can be transmitted though a 1-m-long fiber with little energy loss using this scheme. A sampled grating can be used for longer fibers but its coupling coefficient should be higher. The proposed scheme should prove useful for double-clad fiber lasers and amplifiers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001), Chap. 9.
  2. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, New York, 2002), Chap. 2.
    [CrossRef]
  3. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, �??Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,�?? Opt. Lett. 27, 1294-1296 (2002).
    [CrossRef]
  4. N. A. Brilliant, �??Stimulated Brillouin scattering in a dual-clad fiber amplifier,�?? J. Opt. Soc. Am. B 19, 2551-2557 (2002).
    [CrossRef]
  5. A. F. El-Sherif and T. A. King, �??High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm,�?? Opt. Lett. 28, 22-24 (2003).
    [CrossRef] [PubMed]
  6. A. Höök and A. Bolle, �??Transient dynamics of stimulated Brillouin scattering in optical communication systems,�?? J. Lightwave Technol. 10, 493-502 (1992).
    [CrossRef]
  7. H. Li and K. Ogusu, �??Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,�?? Jpn. J. Appl. Phys. Part 1, 38, 6309-6315 (1999).
    [CrossRef]
  8. M. Sjöberg, M. L. Quiroga-Teixeiro, S. Galt, and S. Hard, �??Dependence of stimulated Brillouin scattering in multimode fibers on beam quality, pulse duration, and coherence length,�?? J. Opt. Soc. Am. B 20, 434-442 (2003).
    [CrossRef]
  9. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
  10. K. Ogusu, �??Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings,�?? J. Opt. Soc. Am. B 17, 769-774 (2000).
    [CrossRef]
  11. R. W. Boyd and K. Rz�?żewski, �??Noise initiation of stimulated Brillouin scattering,�?? Phys. Rev. A 42, 5514-5521 (1990).
    [CrossRef] [PubMed]
  12. B. J. Eggleton and C.M. de Sterke, �??Nonlinear pulse propagation in Bragg grating,�?? J. Opt. Soc. Am. B 14, 2980-2993 (1997).
    [CrossRef]
  13. J. Brennan III and D. LaBrake, �??Realization of >10-m-long chirped fiber Bragg gratings,�?? in Proc. Bragg Gratings, Photosensitivity, and Poling, (Optical Society of America, Washington, D.C., 1999) pp. 35�??37.

Bragg Gratings, Photosens., Poling 1999 (1)

J. Brennan III and D. LaBrake, �??Realization of >10-m-long chirped fiber Bragg gratings,�?? in Proc. Bragg Gratings, Photosensitivity, and Poling, (Optical Society of America, Washington, D.C., 1999) pp. 35�??37.

J. Lightwave Technol. (1)

A. Höök and A. Bolle, �??Transient dynamics of stimulated Brillouin scattering in optical communication systems,�?? J. Lightwave Technol. 10, 493-502 (1992).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

H. Li and K. Ogusu, �??Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,�?? Jpn. J. Appl. Phys. Part 1, 38, 6309-6315 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

R. W. Boyd and K. Rz�?żewski, �??Noise initiation of stimulated Brillouin scattering,�?? Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Other (3)

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001), Chap. 9.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, New York, 2002), Chap. 2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of (a) a single and (b) a sampled FBG for suppressing SBS in optical fibers. The notation used in the paper is also shown.

Fig. 2.
Fig. 2.

Pump (top) and Stokes (bottom) pulses at the fiber output when 15-ns pump pulses with 2-kW peak power are launched into 1-m-long fiber. Green curves show the input pump pulse for comparison, blue curves show the no-grating case, while red curves show the improvement realized using a 1-m-long FBG with κL=35.

Fig. 3.
Fig. 3.

Fraction of pulse energy transmitted as a function of κ for three values of peak power when a single 1-m-long grating is used for SBS suppression.

Fig. 4.
Fig. 4.

Same as in Fig. 3 except that a sampled grating is used for SBS suppression. The grating consists of 4-cm-long samples with 10-cm spacing.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n ¯ + 2 n 1 ( z ) cos ( 2 k B z ) + n 2 E ( z ) 2 ,
E ( z , t ) = Re { E p ( z , t ) exp [ i ( k p z ω p t ) ]
+ E s ( z , t ) exp [ i ( k s z + ω s t ) ] + E s + ( z , t ) exp [ i ( k s z ω s t ) ] }
ρ ( z , t ) = ρ 0 + Re { ρ ( z , t ) exp [ i ( k A z Ω B t ) ] } .
E p z + 1 v g E p t = g B e E s Q + i Γ ( E p 2 + 2 E s + 2 + 2 E s 2 ) E p
E s z + 1 v g E s t = g B e E p Q * + i δ E s + i κ * E s + + i Γ ( E s 2 + 2 E p 2 + 2 E s + 2 ) E s
E s + z + 1 v g E s + t = i δ E s + + i κ E s + i Γ ( E s + 2 + 2 E p 2 + 2 E s 2 ) E s +
τ A Q t + Q = E p E s * + Q 0 ,
κ ( z ) = π n 1 λ , Γ = 2 π λ n 2 , δ = k s k B
f ( z , t ) = 0 , f ( z , t ) f * ( z ' , t ' ) = F δ ( z z ' ) δ ( t t ' ) .

Metrics