Abstract

We demonstrate frequency-resolved optical gating (FROG) for measuring the full intensity and phase of several-optical-cycle 1.5-µm pulses generated from a Kerr-lens mode-locked (KLM) Cr4+:YAG laser. This involves the use of an angle-dithered second-harmonic-generation crystal to achieve the full pulse bandwidth despite the use of a relatively thick nonlinear crystal.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D.I. Ripin, C. Chudoba, J.T. Gopinath, J.G. Fujimoto, E.P. Ippen, U. Morgner, F.X. Kärtner, V. Scheuer, G. Angelov, T. Tschudi, �??Generation of 20-fs pulses by a prismless Cr4+:YAG laser,�?? Opt. Lett. 27, 61 (2002).
    [CrossRef]
  2. D.J. Ripin, J.T. Gopinath, H.M. Shen, A.A. Erchak, G.S. Petrich, L.A. Kolodziejski, F.X. Kärtner, E.P. Ippen, �??Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,�?? Opt. Commun., 214, 285 (2002).
    [CrossRef]
  3. S. Naumov, E. Sorokin, V.L. Kalashnikov, G. Tempea, and I.T. Sorokina, �??Self-starting five optical cycle pulse generation in Cr4+:YAG laser,�?? Appl. Phys. B 76, 1 (2003).
    [CrossRef]
  4. S. Naumov, E. Sorokin, I. T. Sorokina, �??Directly diode-pumped femtosecond Cr4+:YAG laser,�?? paper TuA4 at Advanced Solid-State Photonics 2003, OSA Technical Digest, pp. 144-146. OSA TOPS volume 68.
  5. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
    [CrossRef]
  6. Q. Wu, X.-C. Zhang, �??Free-space electro-optics sampling of mid-infrared pulses,�?? Appl. Phys. Lett. 71, 10 (1997).
    [CrossRef]
  7. D.J. Kane, R. Trebino, �??Characterization of arbitrary femtosecond pulses using Frequency-Resolved Optical Gating,�?? IEEE JQE 29, 571-579, (1993).
    [CrossRef]
  8. A. Baltuska, M.S. Pshenichnikov, and D.A. Wiersma, �??Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,�?? Opt. Lett. 23, 1474-1476 (1988).
    [CrossRef]
  9. P.A. Lacourt, J.M. Dudley, J.M. Merolla, H.Porte, J.P. Goedgebuer and W.T. Rhodes, �??Milliwatt-peakpower pulse characterization at 1.55 µm by wavelength conversion frequency-resolved optical gating,�?? Opt. Lett. 27, 863-865, (2002).
    [CrossRef]
  10. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O�??Shea, A.P. Shreenath, R. Trebino, and R.S. Windeler, �??Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  11. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, �??Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,�?? Opt. Express 7, 342-349 (2000).
    [CrossRef]
  12. P. O�??Shea, M. Kimmel, X. Gu, and R. Trebino, �??Highly simplified device for ultrashort-pulse measurement,�?? Opt. Lett. 26, 932-934 (2001).
    [CrossRef]
  13. S. Akturk, M. Kimmel, P. O�??Shea, and R. Trebino, �??Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,�?? Opt. Express 11, 68-78 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-68">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-68</a>.
    [CrossRef] [PubMed]
  14. S. Akturk, M. Kimmel, P. O�??Shea, and R. Trebino, �??Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,�?? Opt. Express 11, 491-501 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491</a>.
    [CrossRef] [PubMed]
  15. Q. Lin, I. Sorokina, "High-order dispersion effects in solitary mode-locked lasers: side-band generation,�?? Opt. Commun. 153, 285-288 (1998).
    [CrossRef]

Appl. Phys. B (1)

S. Naumov, E. Sorokin, V.L. Kalashnikov, G. Tempea, and I.T. Sorokina, �??Self-starting five optical cycle pulse generation in Cr4+:YAG laser,�?? Appl. Phys. B 76, 1 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Wu, X.-C. Zhang, �??Free-space electro-optics sampling of mid-infrared pulses,�?? Appl. Phys. Lett. 71, 10 (1997).
[CrossRef]

IEEE JQE (1)

D.J. Kane, R. Trebino, �??Characterization of arbitrary femtosecond pulses using Frequency-Resolved Optical Gating,�?? IEEE JQE 29, 571-579, (1993).
[CrossRef]

Opt. Commun. (2)

Q. Lin, I. Sorokina, "High-order dispersion effects in solitary mode-locked lasers: side-band generation,�?? Opt. Commun. 153, 285-288 (1998).
[CrossRef]

D.J. Ripin, J.T. Gopinath, H.M. Shen, A.A. Erchak, G.S. Petrich, L.A. Kolodziejski, F.X. Kärtner, E.P. Ippen, �??Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,�?? Opt. Commun., 214, 285 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

OSA TOPS Series (1)

S. Naumov, E. Sorokin, I. T. Sorokina, �??Directly diode-pumped femtosecond Cr4+:YAG laser,�?? paper TuA4 at Advanced Solid-State Photonics 2003, OSA Technical Digest, pp. 144-146. OSA TOPS volume 68.

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The Cr4+:YAG laser setup. The mode-locking is achieved by a KLM mechanism with a prismless dispersion compensation. CM: chirped mirrors.

Fig.2.
Fig.2.

The theoretical shortest pulses satisfying the limits imposed by GVD and GVM, for a 1-mm-thick LiNbO3 crystal for an undithered crystal (left) and for a dithered crystal with a 10° scan range (right). Note that angle dithering relaxes phase-matching-bandwidth constraint, leaving the GVD constraint unchanged.

Fig. 3.
Fig. 3.

Angle-dithered SHG FROG geometry. Note that this setup employs all reflective optics except for the Fresnel biprism (1.3 mm of fused silica) before the nonlinear crystal, minimizing the material dispersion. This diagram shows a Cassegrain telescope for beam expansion; but we have also used a simple slightly off-axis reflective telescope (without the hole).

Fig. 4.
Fig. 4.

FROG measurements of full intensity and phase of Cr4+:YAG laser. The retrieved pulse width is 37.1 fs (FWHM). The spike in the independently measured spectrum is the continuous-wave (CW) component oscillating in a higher transverse mode. FROG is designed not to see this spike due to its ultrafast gating and small range of delays.

Fig. 5
Fig. 5

FROG measurements of the intensity and phase of Cr4+:YAG laser output pulses. The retrieved pulse width is 46.6fs (FWHM). The narrow spikes in the independently measured spectrum are the cw component and sidebands originating from the higher-order dispersion inside the cavity.

Metrics