Abstract

We have experimentally implemented a time-resolved diffusive optical tomography system via a novel spread spectrum approach. A low power (~5 mW) laser diode modulated with pseudo-random bit sequences replaces the short pulse laser used in conventional time-resolved optical systems, while the time-resolved transmittance is retrieved by correlating the detected signal with the stimulation sequence. Temporal point spread functions of diffusive light propagating through a turbid medium have been measured with remarkably low noise levels and a temporal resolution of 2.24 nanosecond. We also present results of 2-dimensional scanning imaging experiments as evidences of the great potential of this new imaging technique.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Academic Radiology 8, 209–210 (2001).
    [CrossRef] [PubMed]
  2. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  3. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
    [CrossRef]
  4. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  5. Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
    [CrossRef]
  6. B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
    [CrossRef] [PubMed]
  7. D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
    [CrossRef] [PubMed]
  8. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
    [CrossRef] [PubMed]
  9. C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
    [CrossRef] [PubMed]
  10. J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
    [CrossRef]
  11. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
    [CrossRef] [PubMed]
  12. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
    [PubMed]
  13. K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
    [CrossRef]
  14. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  15. D. Grosenick, H. Wabnitz, and H. Rinneberg, “Time-resolved imaging of solid phantoms for optical mammography,” Appl. Opt. 36, 221–231 (1997).
    [CrossRef] [PubMed]
  16. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237–4246 (1999).
    [CrossRef]
  17. F. Gao, H. J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
    [CrossRef] [PubMed]
  18. S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
    [CrossRef] [PubMed]
  19. N. G. Chen and Q. Zhu, “Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,” Proc. SPIE 4250, 37–44 (2001).
    [CrossRef]
  20. G. W. Faris and M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19, 1813–1815 (1994).
    [CrossRef] [PubMed]
  21. R. Mahon, M. D. Duncan, L. L. Tankersley, and J. Reintjes, “Time-gated imaging through dense scatterers with a Raman amplifier,” Appl. Opt. 32, 7425–7433 (1993).
    [CrossRef] [PubMed]
  22. L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  23. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  24. H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  25. N. G. Chen and Q. Zhu, “Time-resolved optical measurements with spread spectrum excitation,” Opt. Lett.,  27, 1806–1808 (2002).
    [CrossRef]
  26. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75–92 (1997).
    [CrossRef] [PubMed]
  27. Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
    [CrossRef]

2003 (2)

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

2002 (5)

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

F. Gao, H. J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

N. G. Chen and Q. Zhu, “Time-resolved optical measurements with spread spectrum excitation,” Opt. Lett.,  27, 1806–1808 (2002).
[CrossRef]

2001 (5)

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Academic Radiology 8, 209–210 (2001).
[CrossRef] [PubMed]

N. G. Chen and Q. Zhu, “Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,” Proc. SPIE 4250, 37–44 (2001).
[CrossRef]

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

2000 (2)

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

1999 (3)

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237–4246 (1999).
[CrossRef]

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

1998 (1)

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

1997 (2)

1996 (2)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

1995 (1)

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

R. Mahon, M. D. Duncan, L. L. Tankersley, and J. Reintjes, “Time-gated imaging through dense scatterers with a Raman amplifier,” Appl. Opt. 32, 7425–7433 (1993).
[CrossRef] [PubMed]

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Aldrich, C. J.

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Alfano, A. A.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Alfano, R. R.

Alrubaiee, M.

Arridge, S. R.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Banks, M.

Behin-Ain, S.

S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
[CrossRef] [PubMed]

Beuthan, J.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Boas, D. A.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

Bruley, D. F.

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

Butler, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cai, W.

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Academic Radiology 8, 209–210 (2001).
[CrossRef] [PubMed]

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

Chen, N. G.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

N. G. Chen and Q. Zhu, “Time-resolved optical measurements with spread spectrum excitation,” Opt. Lett.,  27, 1806–1808 (2002).
[CrossRef]

N. G. Chen and Q. Zhu, “Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,” Proc. SPIE 4250, 37–44 (2001).
[CrossRef]

Chen, Y.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Cheng, X. F.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Dantona, D.

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Dehghani, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

Delpy, D. T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Duncan, M. D.

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Durduran, T.

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Eda, H.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Faris, G. W.

Franceschini, M. A.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Gaida, G.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Gao, F.

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Gayen, S. K.

Gibson, A.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Grosenick, D.

Hebden, J. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Henniger, J.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Hielscher, A. H.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Holboke, M.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Huang, M.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

I, Oda

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Intes, X.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Ito, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Jagjivan, B.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

Jess, H.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Kane, M.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

Kang, K. A.

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

Kashke, M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Klose, A. D.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Kurtzman, S. H.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Lax, M.

Lipton, L.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Londono, J. M.

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

Mahon, R.

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Mantulin, W. M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Minet, O.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Moesta, K. T.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Mu, C.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Muller, G.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Netz, U.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

O’Leary, M. A.

Oda, M.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Page, D. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Patterson, J. R.

S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Peebles, D. M.

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Pogue, B. W.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Reintjes, J.

Reynolds, E. O. R.

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Rinneberg, H.

Sassaroli, A.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Scheel, A.

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Schlag, P. M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Schweiger, M.

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Spencer, J. A. D.

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Takada, M.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tamura, M.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tankersley, L. L.

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tsuchiya, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

UnAh, C.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

van Doorn, T.

S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
[CrossRef] [PubMed]

Veenstra, H.

Wabnitz, H.

Wada, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Xu, M.

Yamada, Y.

F. Gao, H. J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamashita, Y.

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yodh, A.

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Yodh, A. G.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

Zarfos, K.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

Zevallos, M.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhao, H. J.

Zhou, S.

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Zhu, Q.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

N. G. Chen and Q. Zhu, “Time-resolved optical measurements with spread spectrum excitation,” Opt. Lett.,  27, 1806–1808 (2002).
[CrossRef]

N. G. Chen and Q. Zhu, “Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,” Proc. SPIE 4250, 37–44 (2001).
[CrossRef]

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Zhuang, Z.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

Ztziachristos, V.

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Academic Radiology (1)

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Academic Radiology 8, 209–210 (2001).
[CrossRef] [PubMed]

Ann. Biomed. Engr. (1)

K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, “Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,” Ann. Biomed. Engr. 26,138–145 (1998).
[CrossRef]

Appl. Opt. (6)

Brit. J. Obstet. Gynaec. (1)

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, and E. O. R. Reynolds, “The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,” Brit. J. Obstet. Gynaec. 102, 448–453 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, “Frequency-domain optical mammography: Edge effect corrections,” Med. Phys. 23, 146–157 (1996).
[CrossRef]

Neoplasia (2)

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–389 (2003).
[PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Neuroimage (1)

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Optics letters (1)

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, and A. Yodh, “A imager that combines near infrared diffusive light and ultrasound,” Optics letters 24, 1050–1052 (1999).
[CrossRef]

Phys. Med. Biol. (2)

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002).
[CrossRef] [PubMed]

S. Behin-Ain, T. van Doorn, and J. R. Patterson, “Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,” Phys. Med. Biol. 472935–2945 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3074 (1993).
[CrossRef] [PubMed]

Proc. SPIE (2)

N. G. Chen and Q. Zhu, “Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,” Proc. SPIE 4250, 37–44 (2001).
[CrossRef]

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, and B. Chance, “Detection sensitivity and optimization of phased array system,” Proc. SPIE 4250, 211–218 (2001).
[CrossRef]

Quantum Electronics (1)

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, and G. Muller, “Light scattering study of rheumatoid arthritis,” Quantum Electronics 32, 945–952 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and A. A. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Time-resolved diffusive optical tomography system architecture. Thick black arrows indicate flows of broadband signals, while thin ones correspond to low frequency signals. The double-line red arrow represents modulated light propagating through a sample under investigation.

Fig. 2.
Fig. 2.

TPSF of the spread spectrum time-resolved system. The measured temporal profile (black) is slightly wider than the theoretical predication (blue).

Fig. 3.
Fig. 3.

Geometry of the experimental setup for 2-D scanning imaging. The purple rectangle (dashed-dotted) indicates the imaging area.

Fig. 4.
Fig. 4.

Targets used in imaging experiments.

Fig. 5.
Fig. 5.

TPSF of the light transmittance through the phantom in Fig. 3.

Fig. 6.
Fig. 6.

2-dimensional scanning images with a black cylinder as the target. The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 7.
Fig. 7.

2-dimensional scanning images with a spherical target (see the text for its optical properties). The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 8.
Fig. 8.

2-dimensional scanning images with clear glass bottle as the target. The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 9.
Fig. 9.

Line profiles across the center of the void target in the X direction. The solid line, circles, and asterisks correspond to -0.6 ns, 0 ns, and 1.2 ns, respectively.

Tables (1)

Tables Icon

Table 1. Spatial parameters vs. time delay

Metrics