Abstract

The holographic parameters of purple membrane-polyacrylamide films obtained from a mutant form of Halobacterium salinarum (originally Halobacterium halobium) were measured. The synthesized films have an absorption of around 2.5 at 532 nm and a pH of 8.65. The results show that diffraction efficiencies of about 1.2 % (measured at 633 nm) can be achieved with writing intensities in the range of 200–400 mW/cm2 (532 nm), and these values remain constant after saturation. Pump-probe experiments were also used to measure the M state lifetime and our PM films were found to have the lowest M state lifetime described at this pH.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
    [Crossref]
  2. J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780–5789 (1996).
    [Crossref] [PubMed]
  3. R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsin,” Annu. Rev. Phys. Chem. 41, 683–733 (1990).
    [Crossref] [PubMed]
  4. A. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39(11), 2964–2974 (2000).
    [Crossref]
  5. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
    [Crossref]
  6. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
    [Crossref] [PubMed]
  7. N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).
  8. F. Wang, L. Liu, and Q. Li, “Readout of a real-time hologram on bacteriorhodopsin fiml with high diffraction efficiency and intensity,” Opt. Lett. 21, 1697–1699 (1996).
    [Crossref] [PubMed]
  9. R. Thoma, N. Hampp, C. Bruchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for non-linear optical filtering,” Opt. Lett. 16, 651–653 (1991).
    [Crossref] [PubMed]
  10. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
    [Crossref] [PubMed]
  11. A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
    [Crossref] [PubMed]
  12. T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
    [Crossref] [PubMed]
  13. J. Joseph, F. J. Aranda, D. Rao, J. A. Akkara, and M. Nakashima, “Optical fourier proccesing using photoinduced dichroism in bacteriorhodopsin film,” Opt. Lett. 21, 1499–1501 (1996).
    [Crossref] [PubMed]
  14. P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
    [Crossref]
  15. A. Seitz and N. Hampp, “Kinetic optimization of bacteriorhodopsin films for holographic interferometry,” J. Phys. Chem. B 104, 7183–7192 (2000).
    [Crossref]
  16. G. Juez and F. R. Valera, “A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,” FEMS Microbiol. Lett. 23(2–3), 167–170 (1984).
    [Crossref]
  17. D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,” Methods Enzymology 31, 667–678 (1974).
    [Crossref]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).
  19. Q. W. Song, C.-Y. Ku, C. Zhang, R. B. Gros, R. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797–803 (1995).
    [Crossref]

2002 (1)

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

2001 (1)

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

2000 (3)

A. Seitz and N. Hampp, “Kinetic optimization of bacteriorhodopsin films for holographic interferometry,” J. Phys. Chem. B 104, 7183–7192 (2000).
[Crossref]

A. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39(11), 2964–2974 (2000).
[Crossref]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

1997 (1)

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

1996 (3)

1995 (1)

1993 (1)

1992 (1)

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

1991 (1)

1990 (2)

1989 (1)

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

1984 (1)

G. Juez and F. R. Valera, “A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,” FEMS Microbiol. Lett. 23(2–3), 167–170 (1984).
[Crossref]

1974 (1)

D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,” Methods Enzymology 31, 667–678 (1974).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

Akkara, J. A.

Aranda, F. J.

Bablumian, A.

A. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39(11), 2964–2974 (2000).
[Crossref]

Birge, R.

Birge, R. R.

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsin,” Annu. Rev. Phys. Chem. 41, 683–733 (1990).
[Crossref] [PubMed]

Blumer, R.

Boothroyd, S.

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

Bruchle, C.

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

R. Thoma, N. Hampp, C. Bruchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for non-linear optical filtering,” Opt. Lett. 16, 651–653 (1991).
[Crossref] [PubMed]

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

Chen, Z.

Chrostwiski, J.

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

DeCristofano, B.

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

Downie, J. D.

Fischer, B.

Gros, R. B.

Gross, R. B.

Hampp, N.

A. Seitz and N. Hampp, “Kinetic optimization of bacteriorhodopsin films for holographic interferometry,” J. Phys. Chem. B 104, 7183–7192 (2000).
[Crossref]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

R. Thoma, N. Hampp, C. Bruchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for non-linear optical filtering,” Opt. Lett. 16, 651–653 (1991).
[Crossref] [PubMed]

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

Joseph, J.

Juez, G.

G. Juez and F. R. Valera, “A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,” FEMS Microbiol. Lett. 23(2–3), 167–170 (1984).
[Crossref]

Kimball, B.

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

Kimball, B.R.

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

Kimball, D. R.

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

Krile, T.

A. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39(11), 2964–2974 (2000).
[Crossref]

Ku, C.-Y.

Lewis, A.

Li, Q.

Liu, L.

Michalak, R.

Miller, A.

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

Nakashima, M.

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

J. Joseph, F. J. Aranda, D. Rao, J. A. Akkara, and M. Nakashima, “Optical fourier proccesing using photoinduced dichroism in bacteriorhodopsin film,” Opt. Lett. 21, 1499–1501 (1996).
[Crossref] [PubMed]

Nebenzahl, I.

Oesterhelt, D.

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

R. Thoma, N. Hampp, C. Bruchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for non-linear optical filtering,” Opt. Lett. 16, 651–653 (1991).
[Crossref] [PubMed]

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,” Methods Enzymology 31, 667–678 (1974).
[Crossref]

Okamoto, T.

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

Panchangam, A.

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

Popp, A.

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

Rao, D.

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

J. Joseph, F. J. Aranda, D. Rao, J. A. Akkara, and M. Nakashima, “Optical fourier proccesing using photoinduced dichroism in bacteriorhodopsin film,” Opt. Lett. 21, 1499–1501 (1996).
[Crossref] [PubMed]

Sastry, K.

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

Seitz, A.

A. Seitz and N. Hampp, “Kinetic optimization of bacteriorhodopsin films for holographic interferometry,” J. Phys. Chem. B 104, 7183–7192 (2000).
[Crossref]

Smithey, D. T.

Song, Q. W.

Stoeckenius, W.

D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,” Methods Enzymology 31, 667–678 (1974).
[Crossref]

Thoma, R.

Valera, F. R.

G. Juez and F. R. Valera, “A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,” FEMS Microbiol. Lett. 23(2–3), 167–170 (1984).
[Crossref]

Wang, F.

Werner, O.

Wu, P.

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

Zhang, C.

Annu. Rev. Phys. Chem. (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsin,” Annu. Rev. Phys. Chem. 41, 683–733 (1990).
[Crossref] [PubMed]

Appl. Opt. (2)

J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780–5789 (1996).
[Crossref] [PubMed]

T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt.508–511 (1997).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Wu, D. R. Kimball, B.R. Kimball, M. Nakashima, and B. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[Crossref]

Bell. Sys. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

Chem. Rev. (1)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

FEMS Microbiol. Lett. (1)

G. Juez and F. R. Valera, “A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,” FEMS Microbiol. Lett. 23(2–3), 167–170 (1984).
[Crossref]

GBF Monogr. (1)

N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, “Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,” GBF Monogr. 13, 377–383 (1989).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, “Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BR WT and its variants BR D85E and BR D96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[Crossref]

J. Phys. Chem. B (1)

A. Seitz and N. Hampp, “Kinetic optimization of bacteriorhodopsin films for holographic interferometry,” J. Phys. Chem. B 104, 7183–7192 (2000).
[Crossref]

Med. Phys. (1)

A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–27 (2001).
[Crossref] [PubMed]

Methods Enzymology (1)

D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,” Methods Enzymology 31, 667–678 (1974).
[Crossref]

Opt. Eng. (1)

A. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39(11), 2964–2974 (2000).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption spectra of the BR/acrylamide film (in the region of 400–700 nm)

Fig. 2.
Fig. 2.

Schematic representation of the holographic set-up employed (M: mirror, BS: beam splitter, PD: photodetector, PC: personal computer).

Fig. 3.
Fig. 3.

Pump-probe curves at three different intensities. The top right-hand corner shows the normalized transmittance decay curve after the pump beam was turned off.

Fig. 4.
Fig. 4.

Diffraction efficiency versus exposure time for three different recording intensities

Tables (1)

Tables Icon

Table 1. Amplitude and refractive index modulation for the three intensities employed with the BR films (the normalization to the maximum modulation is shown in italics).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T Δ T f = i = 1 n c i e t τ i
τ eff = i = 1 n c i τ i i = 1 n c i i = 1 n c i = 1
η = e 2 α d Cos θ ( Sinh 2 ( α 1 d 2 Cos θ ) + Sin 2 ( π n 1 d λ Cos θ ) )

Metrics