Abstract

We investigated group velocities and group velocity dispersion characteristics of photonic crystal waveguides and coupled resonator optical waveguides(CROW’s). In photonic circuits comprised of the linear defect waveguides, the insertion of the CROW section suppresses energy flow due to its highly dispersive characteristics. We analyze the change in the group velocity and the group velocity dispersion by varying the radius of the holes in the waveguide channel. Properly designed CROW sections provide a wide range of control in the group velocity and positive/negative group velocity dispersion. They can be used as delay lines or dispersion compensators in photonic integrated circuits comprised of linear defect photonic crystal waveguides.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide

Youg Xu, Reginald K. Lee, and Amnon Yariv
J. Opt. Soc. Am. B 17(3) 387-400 (2000)

Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays

Nobuyuki Matsuda, Eiichi Kuramochi, Hiroki Takesue, and Masaya Notomi
Opt. Lett. 39(8) 2290-2293 (2014)

Localized propagation modes guided by shear discontinuities in photonic crystals

Kehan Tian, George Barbastathis, and John Hong
Opt. Express 14(22) 10887-10897 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [Crossref] [PubMed]
  2. Amnon Yariv, Yong Xu, Reginald K. Lee, and Axel Scherer, “Coupled-resonator optical waveguide:a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [Crossref]
  3. K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
    [Crossref]
  4. Alejandro Martnez, Andres Garca, Pablo Sanchis, and Javier Mart, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A 20, 147–150 (2003).
    [Crossref]
  5. Marin Soljacic, Steven G. Johnson, Shanhui Fan, Mihai Ibanescu, Erich Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
    [Crossref]
  6. Woo Jun Kim and John D. O Brien, “Optimization of a two-dimensional photonic crystal waveguide branch by simulated annealing and the finite element method,” to appear in J. Opt. Soc. Am. B.
  7. Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
    [Crossref]

2003 (1)

2002 (2)

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

1999 (1)

Fan, Shanhui

Garca, Andres

Hosomi, K.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

Ibanescu, Mihai

Ippen, Erich

Joannopoulos, J. D.

Johnson, Steven G.

Katsuyama, T.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

Kim, Woo Jun

Woo Jun Kim and John D. O Brien, “Optimization of a two-dimensional photonic crystal waveguide branch by simulated annealing and the finite element method,” to appear in J. Opt. Soc. Am. B.

Lee, Reginald K.

Mart, Javier

Martnez, Alejandro

Morita, Hirofumi

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Notomi, Masaya

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

O Brien, John D.

Woo Jun Kim and John D. O Brien, “Optimization of a two-dimensional photonic crystal waveguide branch by simulated annealing and the finite element method,” to appear in J. Opt. Soc. Am. B.

Sanchis, Pablo

Scherer, Axel

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Shinya, Akihiko

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Soljacic, Marin

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Xu, Yong

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Yamada, Koji

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Yariv, Amnon

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Koji Yamada, Hirofumi Morita, Akihiko Shinya, and Masaya Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198, 395–402 (2001).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Other (1)

Woo Jun Kim and John D. O Brien, “Optimization of a two-dimensional photonic crystal waveguide branch by simulated annealing and the finite element method,” to appear in J. Opt. Soc. Am. B.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1. (a)
Fig. 1. (a)

Computational domain of linear defect waveguide in a triangular lattice photonic crystal. The radius of air holes is 0.3(r/a) and the refractive index of background is 3.4. (b) Eigenvalue plot of the structure (a).

Fig. 2. (a)
Fig. 2. (a)

Group velocities and (b) their dispersion plots for the odd and even guided modes plotted as solid lines in Fig. 1(b).

Fig. 3. (a)
Fig. 3. (a)

Computational domain of the CROWin a triangular lattice photonic crystal. The radius of air holes is 0.3(r/a) and the index of background is 3.4. (b) Eigenvalue plot of the structure (a) for different radii of a hole in the linear defect channel.

Fig. 4. (a)
Fig. 4. (a)

Group velocities and (b) their dispersion plots for different radii of holes.

Fig. 5. (a)
Fig. 5. (a)

Computational domain for the FDTD simulation. (b) Time sequences of Hz at different probe locations A, B and C. The reference plot labeled C* is that of the linear defect waveguide.

Metrics