Abstract

Novel designs of polarization devices based on Bragg reflector waveguides in a high index contrast silicon-on-insulator (SOI) platform have been proposed. Brewster angle condition is incorporated in the periodic structures. Numerical simulations with a 3D semivectorial beam propagation method demonstrate the device performance as TE mode polarizer with high TE to TM extinction ratio and TE/TM mode polarization splitter and combiner with high polarization splitting efficiency.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 68, 1196–1201 (1978).
  2. N. M. Litchinister, A. K. Abeeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  3. F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
    [Crossref]
  4. I. M. Bassett and A. Argyros, “Elimination of polarization degeneracy in round waveguides,” Opt. Express 10, 1342–1345 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1342.
    [Crossref] [PubMed]
  5. M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  6. M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, “directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991).
    [Crossref] [PubMed]
  7. M. Cantin, C. Carignan, R. Côté, M. A. Duguay, R. Larose, P. LeBel, and F. Ouellette, “Remotely switched hollow-core antiresonant reflecting optical waveguide,” Opt. Lett. 16, 1738–1740 (1991).
    [Crossref] [PubMed]
  8. J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
    [Crossref]
  9. E. Simova, I. Golub, and A. Delage, “Analysis of polarization properties of lateral antiresonant reflecting optical waveguides,” Opt. Comm., in press.
  10. E. Simova and I. Golub, “Polarization devices based on Bragg reflector waveguides,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA Topical Meeting, Monterey, CA, USA, Sept. 1–3 (2003), paper MD19.

2002 (2)

2000 (1)

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

1995 (1)

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

1991 (2)

1986 (1)

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

1978 (1)

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 68, 1196–1201 (1978).

Abeeeluck, A. K.

Argyros, A.

Bassett, I. M.

Brauer, A.

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

Brechet, F.

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

Cantin, M.

Carignan, C.

Côté, R.

Delage, A.

E. Simova, I. Golub, and A. Delage, “Analysis of polarization properties of lateral antiresonant reflecting optical waveguides,” Opt. Comm., in press.

Duguay, M. A.

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

M. Cantin, C. Carignan, R. Côté, M. A. Duguay, R. Larose, P. LeBel, and F. Ouellette, “Remotely switched hollow-core antiresonant reflecting optical waveguide,” Opt. Lett. 16, 1738–1740 (1991).
[Crossref] [PubMed]

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Eggleton, B. J.

Gehler, J.

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

Golub, I.

E. Simova, I. Golub, and A. Delage, “Analysis of polarization properties of lateral antiresonant reflecting optical waveguides,” Opt. Comm., in press.

E. Simova and I. Golub, “Polarization devices based on Bragg reflector waveguides,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA Topical Meeting, Monterey, CA, USA, Sept. 1–3 (2003), paper MD19.

Headley, C.

Karthe, W.

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

Koch, T. L.

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Larose, R.

LeBel, P.

Lederer, F.

Leine, L.

Litchinister, N. M.

Mann, M.

Marcon, J.

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

Ouellette, F.

Pagnoux, D.

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

Roy, P.

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

Simova, E.

E. Simova, I. Golub, and A. Delage, “Analysis of polarization properties of lateral antiresonant reflecting optical waveguides,” Opt. Comm., in press.

E. Simova and I. Golub, “Polarization devices based on Bragg reflector waveguides,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA Topical Meeting, Monterey, CA, USA, Sept. 1–3 (2003), paper MD19.

Trutschel, U.

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, “directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991).
[Crossref] [PubMed]

Wachter, C.

Yariv, A.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 68, 1196–1201 (1978).

Yeh, P.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 68, 1196–1201 (1978).

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Electron. Lett. (2)

J. Gehler, A. Brauer, W. Karthe, U. Trutschel, and M. A. Duguay, “ARROW-based optical wavelength filter in silica,” Electron. Lett. 31, 547–549 (1995).
[Crossref]

F. Brechet, P. Roy, J. Marcon, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[Crossref]

Opt. Commun. (1)

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 68, 1196–1201 (1978).

Opt. Express (1)

Opt. Lett. (3)

Other (2)

E. Simova, I. Golub, and A. Delage, “Analysis of polarization properties of lateral antiresonant reflecting optical waveguides,” Opt. Comm., in press.

E. Simova and I. Golub, “Polarization devices based on Bragg reflector waveguides,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA Topical Meeting, Monterey, CA, USA, Sept. 1–3 (2003), paper MD19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Design structure of the Bragg reflector waveguide for TE polarizer. Si nhigh =3.476, Si 3 N 4 nlow =1.99, Si O 2 n Si O 2 = 1.5 , dhigh =0.37 µm, dlow =1.14 µm, dcore =6.1 µm, ncore =nlow =1.99 (non-depressed core) or ncore =1.8 (depressed core), height of Si substrate hSi =1µm, SiO2 height h Si O 2 = 1 μm , height of Bragg reflectors region hcore =2.2 µm and hair =1.4 µm air.

Fig. 2.
Fig. 2.

Power in TE (triangles) and TM (dots) modes versus propagation distance in the Bragg reflector waveguide with depressed index core for two and five periods.

Fig. 3.
Fig. 3.

Power in TE (triangles) and TM (dots) modes versus propagation distance in the Bragg reflector waveguide with non-depressed index core for two and five periods.

Fig. 4.
Fig. 4.

Asymmetric structure of coupled Bragg reflector waveguides for polarization splitting/combining. Parameters are the same as given in Fig. 1.

Fig. 5.
Fig. 5.

TE mode distribution versus propagation distance in the waveguides in Fig 4. Light is launched in the upper core.

Fig. 6.
Fig. 6.

TM mode distribution versus propagation distance in the waveguides in Fig 4. Light is launched in the upper core.

Fig. 7.
Fig. 7.

Power in TE (triangles) and TM (dots) modes from Figs. 5 and 6 versus propagation distance in the coupled waveguides.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d high = ( 2 k + 1 ) λ 4 ( n high 2 + n low 2 ) 1 2 n high 2 ; d low = ( 2 l + 1 ) λ 4 ( n high 2 + n low 2 ) 1 2 n low 2 , k , l = 0 , 1 , 2 , ,
d core = m λ 2 1 ( n core 2 n eff 2 ) 1 2 , m = 1 , 2 , , .
n eff = n high n low ( n high 2 + n low 2 ) 1 2 and n eff n core n low .

Metrics