Abstract

We present a first experimental demonstration of melting of light pulses and freezing of lightwave modes by applying external noise which acts like temperature, verifying our recent theoretical prediction (Gordon and Fischer [1]). The experiment was performed in a fiber laser passively mode-locked by nonlinear rotation of polarization. The first order phase transition was observed directly in time domain and also by measurement of the quartic order parameter (RF power).

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Gordon and B. Fischer, �??Phase Transition Theory of Many-Mode Ordering and Pulse Formation in Lasers,�?? Phys. Rev. Lett. 89, 103901, (2002).
    [CrossRef]
  2. H. A. Haus, �??Mode-Locking of Lasers,�?? IEEE J. Sel. Top. Quant. 6, 1173 (2000).
  3. H. Haken and H. Ohno, �??Theory of Ultra-Short Laser Pulses�??, Opt. Commun. 16, 205 (1976).
    [CrossRef]
  4. H. A. Haus, �??Parameter Ranges for CW Passive Mode Locking,�?? IEEE J. Quantum Electron. 12, 169 (1976).
    [CrossRef]
  5. H. Haken and H. Ohno, �??Onset of ultrashort laser pulses: first or second order phase transition?,�?? Opt. Commun. 26, 117 (1978).
    [CrossRef]
  6. H. Haken, Synergetics, 2-nd ed., Springler-Verlag, Berlin Heidelberg New-York (1978).
  7. E. P. Ippen, L. Y. Liu and H. A. Haus, �??Self-Starting Condition for Additive-Pulse Mode-Locked Lasers,�?? Opt. Lett. 15, 183 (1990).
  8. C. J. Chen, P. K. A. Wai and C. R. Menyuk, �??Self-Starting of Passively Mode-Locked Lasers with Fast Saturable Absorbers,�?? Opt. Lett. 20 (4), 350 (1995).
  9. F. Fontana, M. Begotti, E. M. Pessina and L. A. Lugiato, �??Maxwell-Bloch ML Instabilities in Erbium-Doped Fiber Lasers,�?? Opt. Commun. 114, 89 (1995).
    [CrossRef]
  10. M. A. Marioni and A. A. Hnilo, �??Self-Starting of Self Mode-Locking Ti:Sapphire Lasers. Description with a Poincare Map,�?? Opt. Commun. 147, 89 (1998).
    [CrossRef]
  11. T. Kapitula, J. N. Kutz, Björn Sandstede, �??Stability of Pulses in the Master Mode-Locking Equation,�?? J. Opt. Soc. Am. B 19, 740, (2002).
  12. F. Krausz, T. Brabec and Ch. Spilmann, �??Self-Starting of Passive Mode Locking,�?? Opt. Lett. 16, 235 (1991).
  13. H. A. Haus and E. P. Ippen, �??Self-Starting of Passively Mode-Locked Lasers,�?? Opt. Lett. 16, 1331 (1991).
  14. J. Herrmann, �??Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers,�?? Opt. Commun. 98, 111 (1993).
    [CrossRef]
  15. V. DeGiorgio and M. O. Scully, �??Analogy between the Laser Threshold Region and a Second-Order Phase Transition,�?? Phys. Rev. A 2, 1170 (1970).
    [CrossRef]
  16. H. A. Haus and A. Mecozzi, �??Noise os Mode-Locked Lasers,�?? IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  17. H. E. Stanley, Introduction to phase transitions and critical phenomena, Oxford University Press, NY and Oxford (1971).
  18. A. Gordon and B Fischer, �??Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,�?? Opt. Commun 223, 151 (2003).
    [CrossRef]
  19. A. Gordon and B. Fischer, �??Inhibition of modulation instability in lasers by noise,�?? Opt. Lett. 28, 1326 (2003).

IEEE J. Quantum Electron.

H. A. Haus, �??Parameter Ranges for CW Passive Mode Locking,�?? IEEE J. Quantum Electron. 12, 169 (1976).
[CrossRef]

H. A. Haus and A. Mecozzi, �??Noise os Mode-Locked Lasers,�?? IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

IEEE J. Sel. Top. Quant.

H. A. Haus, �??Mode-Locking of Lasers,�?? IEEE J. Sel. Top. Quant. 6, 1173 (2000).

J. Opt. Soc. Am. B

Opt. Commun

A. Gordon and B Fischer, �??Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,�?? Opt. Commun 223, 151 (2003).
[CrossRef]

Opt. Commun.

H. Haken and H. Ohno, �??Theory of Ultra-Short Laser Pulses�??, Opt. Commun. 16, 205 (1976).
[CrossRef]

H. Haken and H. Ohno, �??Onset of ultrashort laser pulses: first or second order phase transition?,�?? Opt. Commun. 26, 117 (1978).
[CrossRef]

F. Fontana, M. Begotti, E. M. Pessina and L. A. Lugiato, �??Maxwell-Bloch ML Instabilities in Erbium-Doped Fiber Lasers,�?? Opt. Commun. 114, 89 (1995).
[CrossRef]

M. A. Marioni and A. A. Hnilo, �??Self-Starting of Self Mode-Locking Ti:Sapphire Lasers. Description with a Poincare Map,�?? Opt. Commun. 147, 89 (1998).
[CrossRef]

J. Herrmann, �??Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers,�?? Opt. Commun. 98, 111 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

V. DeGiorgio and M. O. Scully, �??Analogy between the Laser Threshold Region and a Second-Order Phase Transition,�?? Phys. Rev. A 2, 1170 (1970).
[CrossRef]

Phys. Rev. Lett.

A. Gordon and B. Fischer, �??Phase Transition Theory of Many-Mode Ordering and Pulse Formation in Lasers,�?? Phys. Rev. Lett. 89, 103901, (2002).
[CrossRef]

Other

H. Haken, Synergetics, 2-nd ed., Springler-Verlag, Berlin Heidelberg New-York (1978).

H. E. Stanley, Introduction to phase transitions and critical phenomena, Oxford University Press, NY and Oxford (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics