Abstract

In this paper a polarization-independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration is newly proposed. The proposed apparatus consists of a polarization beam splitter, high birefringence fibers, and polarization controllers. Our theoretical analysis shows that the apparatus exhibits unique feature which allows it to operate as a polarization-independent multiwavelength periodic filter with a good channel isolation and to make its channel wavelength switchable by varying effective birefringence of the polarization-diversity loop through the proper adjustment of the polarization controllers contained within the loop. Theoretical prediction was experimentally verified.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Wilkinson, “Birefringence control in close-spaced fused-fiber wavelength-division multiplexers: a comparison of three models,” Opt. Lett. 16, 1159–1161 (1991).
    [Crossref] [PubMed]
  2. M. Eisenmann and E. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm,” J. Lightwave Technol. 6, 113–119 (1988).
    [Crossref]
  3. J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
    [Crossref]
  4. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 2002).
    [Crossref]
  5. D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17, 1635–1637 (1992).
    [Crossref] [PubMed]
  6. D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
    [Crossref]
  7. X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995).
    [Crossref] [PubMed]
  8. Y. W. Lee, B. Lee, and J. Jung, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” ECOC and IOOC, 568–569, Italy (2003).
  9. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
    [Crossref]
  10. T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
    [Crossref]
  11. R. C. Jones, “New calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–492 (1941).
    [Crossref]
  12. Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
    [Crossref]
  13. S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
    [Crossref]

2002 (1)

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

2000 (1)

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[Crossref]

1995 (1)

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

1992 (2)

T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
[Crossref]

D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17, 1635–1637 (1992).
[Crossref] [PubMed]

1991 (1)

1990 (2)

J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

1988 (1)

M. Eisenmann and E. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm,” J. Lightwave Technol. 6, 113–119 (1988).
[Crossref]

1941 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 2002).
[Crossref]

Baran, J. E.

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

Bilodeau, F.

Cheung, K.

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

Chiang, K. S.

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[Crossref]

Claus, R. O.

Eisenmann, M.

M. Eisenmann and E. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm,” J. Lightwave Technol. 6, 113–119 (1988).
[Crossref]

Fang, X.

Gambling, W. A.

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[Crossref]

Guiyun, K.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Hill, K. O.

Inoue, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Johnson, D. C.

Johnson, J. J.

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

Jones, R. C.

Jung, J.

Y. W. Lee, B. Lee, and J. Jung, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” ECOC and IOOC, 568–569, Italy (2003).

Lee, B.

Y. W. Lee, B. Lee, and J. Jung, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” ECOC and IOOC, 568–569, Italy (2003).

Lee, Y. W.

Y. W. Lee, B. Lee, and J. Jung, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” ECOC and IOOC, 568–569, Italy (2003).

Li, S.

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[Crossref]

Malo, B.

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
[Crossref]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
[Crossref]

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Qida, Z.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Saleh, A. A. M.

J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
[Crossref]

Shiquan, Y.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Shuzhong, Y.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Smith, D. A.

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

Stegeman, G. I.

Stone, J.

J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Stulz, L. W.

J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Weidel, E.

M. Eisenmann and E. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm,” J. Lightwave Technol. 6, 113–119 (1988).
[Crossref]

Wigley, P. G. J.

Wilkinson, I. J.

Xiaoyi, D.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Zhaohui, L.

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

Appl. Phys. Lett. (1)

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[Crossref]

Electron. Lett. (2)

T. Morioka, K. Mori, and M. Saruwatari, “Ultrafast polarization-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation,” Electron. Lett. 28, 1070–1072 (1992).
[Crossref]

J. Stone, L. W. Stulz, and A. A. M. Saleh, “Three-mirror fibre Fabry-Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

D. A. Smith, J. E. Baran, J. J. Johnson, and K. Cheung, “Integrated-optic acoustically-tunable filters for WDM networks,” IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization-diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,” IEEE Photon. Technol. Lett. 14, 774–776 (2002).
[Crossref]

J. Lightwave Technol. (1)

M. Eisenmann and E. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm,” J. Lightwave Technol. 6, 113–119 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Other (2)

Y. W. Lee, B. Lee, and J. Jung, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” ECOC and IOOC, 568–569, Italy (2003).

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1. (a)
Fig. 1. (a)

Basic structure of the PDLC-based all-fiber filter and (b) schematic of the propagating light path.

Fig. 2.
Fig. 2.

Schematic diagram of the proposed filter for channel wavelength-switching.

Fig. 3.
Fig. 3.

Calculated transmission spectrum of the proposed filter for channel wavelength-switching.

Fig. 4.
Fig. 4.

Measured transmission spectrum of the proposed filter for channel wavelength-switching.

Tables (1)

Tables Icon

Table 1. Four optimal QWP combinations and corresponding intensities

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T CW = [ 1 0 0 0 ] R ( π 4 ) [ e i Γ 2 0 0 e i Γ 2 ] R ( π 4 ) [ 1 0 0 0 ] = [ cos ( Γ 2 ) 0 0 0 ] ,
T CCW = [ 0 0 0 1 ] R ( π 4 ) [ e i Γ 2 0 0 e i Γ 2 ] R ( π 4 ) [ 0 0 0 1 ] = [ 0 0 0 cos ( Γ 2 ) ]
E in = [ a b e j ϕ ]
E out = T CW · E in + T CCW · E in = cos ( Γ 2 ) [ a b e j ϕ ] , I out = 1 2 ε 0 μ 0 ( a 2 + b 2 ) [ 1 + cos ( Γ ) ]
T = [ 1 0 0 0 ] T QWP 2 ( θ 2 ) T QWP 1 ( θ 1 ) R ( θ p ) [ e i Γ 2 0 0 e i Γ 2 ] R ( θ p ) T HWP ( θ h ) [ 1 0 0 0 ]
+ [ 0 0 0 1 ] T HWP ( θ h ) R ( θ p ) [ e i Γ 2 0 0 e i Γ 2 ] R ( θ p ) T QWP 1 ( θ 1 ) T QWP 2 ( θ 2 ) [ 0 0 0 1 ]
TR = 1 2 + 1 2 { sin [ 2 ( θ p θ 2 θ 1 ) ] cos 2 ( θ 1 θ 2 ) sin [ 2 ( θ p + θ 2 θ 1 ) ] sin 2 ( θ 1 θ 2 ) } cos ( Γ )
1 2 { sin [ 2 ( θ 1 θ 2 ) ] cos ( 2 θ 2 ) } sin ( Γ )

Metrics