Abstract

We present experimental results highlighting the physical mechanism responsible for the initial spectral broadening of femtosecond Ti:Sapphire pulses in a highly birefringent microstructured fiber having a small effective area. By rotating the input polarization and varying the injected power while monitoring the resulting changes in the output spectrum, we are bringing clear evidences that the initial broadening mechanism leading to a broadband supercontinuum is indeed the fission of higher-order solitons into redshifted fundamental solitons along with blueshifted nonsolitonic radiation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.K. Ranka, R.S. Windeler and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fiber with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. A.V. Husakou and J. Hermann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.St.J. Russell and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  5. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  6. B. R. Washburn, S. E. Ralph and R. S. Windeler, �??Ultrashort pulse propagation in air-silica microstructure fiber,�?? Opt. Express 10, 575-580 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>.
    [CrossRef] [PubMed]
  7. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higherorder solitons in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  8. A. Ortigosa-Blanch, J.C. Knight and P. St. J. Russell, �??Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 2567-2572 (2002).
    [CrossRef]
  9. G. Genty, M. Lehtonen , H. Ludvigsen, J. Broeng and K. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,�?? Opt. Express 10, 1083-1098 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>
    [CrossRef] [PubMed]
  10. K.M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S.R. Keiding and J. J. Larsen, �??Initial steps of supercontinuum generation in photonic crystal fibers,�?? J. Opt. Soc. Am. B 20, 1887-1893 (2003).
    [CrossRef]
  11. G.P. Agrawal, Nonlinear Fiber Optics 3rd Ed. (Academic Press, New York, 2001).
  12. N. Akhmediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A. 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  13. M. Lehtonen, G. Genty, H. Ludvigsen and M. Kaivola, �??Supercontinuum generation in a highly birefringent microstructure fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
    [CrossRef]
  14. J.C. Knight, T.A. Birks, P.St.J. Russell and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]

Appl. Phys. Lett.

M. Lehtonen, G. Genty, H. Ludvigsen and M. Kaivola, �??Supercontinuum generation in a highly birefringent microstructure fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

J. Opt. Soc. Am B

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A.

N. Akhmediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A. 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett

A.V. Husakou and J. Hermann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.St.J. Russell and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Other

G.P. Agrawal, Nonlinear Fiber Optics 3rd Ed. (Academic Press, New York, 2001).

Supplementary Material (2)

» Media 1: AVI (529 KB)     
» Media 2: AVI (508 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM images of the 2 m long MS fiber used for the experiment (left) and a detailed view of its central region (right). The outer diameter of the fiber is 125 µm and the elliptical core has dimensions 1.3µm×2.2 µm.

Fig. 2.
Fig. 2.

Generated supercontinua along the two eigenpolarization axes of the fiber shown in Fig. 1. The upper spectrum was generated along the fast axis while the lower spectrum was generated along the slow axis. The dip on those spectra indicates that the fast axis has a ZDW of 625 nm while the slow axis has a ZDW of 645 nm.

Fig. 3.
Fig. 3.

(529 KB) Evolution of the generated spectrum as the injected intensity is increased. The pump wavelength was λ=740 nm, the pulse duration ΔtFWHM=127 fs and the polarization was oriented along the slow axis of the fiber. On the right is shown a detailed view of the supercontinuum generated at 91 GW/cm2 of injected intensity (Po =2.7 kW).

Fig. 4.
Fig. 4.

(508 KB) Evolution of the generated spectrum as the injected intensity is increased. The pump wavelength was λ=758 nm, the pulse duration ΔtFWHM=192 fs and the polarization was oriented along the slow axis of the fiber. On the right is shown a detailed view of the supercontinuum generated at 56 GW/cm2 of injected intensity (Po =1.7 kW).

Fig. 5.
Fig. 5.

Evolution of the generated spectrum as the input polarization is rotated. The 0° position was aligned with the slow axis of the fiber. The input pulses had a wavelength λ=758 nm, the pulse duration ΔtFWHM=192 fs and the injected intensity was 60, 20 and 10 GW/cm2 for a, b and c respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = L D L NL = γ P o β 2 T FWHM 1.665 ,

Metrics