Abstract

We propose and analyze a novel scheme to realize electromagnetically induced transparency (EIT) via robust electron spin coherence in semiconductor quantum wells. This scheme uses light hole transitions in a quantum well waveguide to induce electron spin coherence in the absence of an external magnetic field. For certain polarization configurations, the light hole transitions form a crossed double-V system. EIT in this system is strongly modified by a coherent wave mixing process induced by the electron spin coherence.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  2. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).
  3. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Progress in Optics 35, 257 (1996).
    [Crossref]
  4. example For a recent review see forM. D. Lukin, “Trapping and manipulating photons in an atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
    [Crossref]
  5. R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81, 1477 (1998).
    [Crossref]
  6. M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
    [Crossref] [PubMed]
  7. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831 (2003).
    [Crossref] [PubMed]
  8. M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
    [Crossref] [PubMed]
  9. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
    [Crossref]
  10. For a recent review, see J. M. Kikkawa and D. D. Awschalom, “Electron spin and optical coherence in semiconductors,” Phys. Today 52(6), 33 (1999).
    [Crossref]
  11. A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
    [Crossref] [PubMed]
  12. A. Imamoglu, “Electromagnetically induced transparency with two dimensional electron spins,” Opt. Comm. 179, 179 (2000).
    [Crossref]

2003 (3)

example For a recent review see forM. D. Lukin, “Trapping and manipulating photons in an atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
[Crossref]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831 (2003).
[Crossref] [PubMed]

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

2002 (1)

M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[Crossref] [PubMed]

2000 (1)

A. Imamoglu, “Electromagnetically induced transparency with two dimensional electron spins,” Opt. Comm. 179, 179 (2000).
[Crossref]

1999 (1)

For a recent review, see J. M. Kikkawa and D. D. Awschalom, “Electron spin and optical coherence in semiconductors,” Phys. Today 52(6), 33 (1999).
[Crossref]

1998 (1)

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81, 1477 (1998).
[Crossref]

1997 (2)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

1996 (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Progress in Optics 35, 257 (1996).
[Crossref]

1994 (1)

A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
[Crossref] [PubMed]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Progress in Optics 35, 257 (1996).
[Crossref]

Awschalom, D. D.

For a recent review, see J. M. Kikkawa and D. D. Awschalom, “Electron spin and optical coherence in semiconductors,” Phys. Today 52(6), 33 (1999).
[Crossref]

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

Binder, R.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81, 1477 (1998).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Heberle, A. P.

A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
[Crossref] [PubMed]

Imamoglu, A.

A. Imamoglu, “Electromagnetically induced transparency with two dimensional electron spins,” Opt. Comm. 179, 179 (2000).
[Crossref]

Kikkawa, J. M.

For a recent review, see J. M. Kikkawa and D. D. Awschalom, “Electron spin and optical coherence in semiconductors,” Phys. Today 52(6), 33 (1999).
[Crossref]

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

Kwong, N.H.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

Lindberg, M.

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81, 1477 (1998).
[Crossref]

Lukin, M. D.

example For a recent review see forM. D. Lukin, “Trapping and manipulating photons in an atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
[Crossref]

Phillips, M.

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831 (2003).
[Crossref] [PubMed]

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[Crossref] [PubMed]

Ploog, K.

A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
[Crossref] [PubMed]

Ruhle, W. W.

A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
[Crossref] [PubMed]

Rumyantsev, I.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

Samarth, N.

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).

Smorchkova, I. P.

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

Takayama, R.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

Wang, H.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831 (2003).
[Crossref] [PubMed]

M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).

Opt. Comm. (1)

A. Imamoglu, “Electromagnetically induced transparency with two dimensional electron spins,” Opt. Comm. 179, 179 (2000).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (4)

A. P. Heberle, W. W. Ruhle, and K. Ploog, “Quantum beats of electron Larmor precession in GaAs wells”, Phys. Rev. Lett. 72, 3887 (1994).
[Crossref] [PubMed]

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81, 1477 (1998).
[Crossref]

M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[Crossref] [PubMed]

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref] [PubMed]

Phys. Today (2)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

For a recent review, see J. M. Kikkawa and D. D. Awschalom, “Electron spin and optical coherence in semiconductors,” Phys. Today 52(6), 33 (1999).
[Crossref]

Progress in Optics (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Progress in Optics 35, 257 (1996).
[Crossref]

Rev. Mod. Phys. (1)

example For a recent review see forM. D. Lukin, “Trapping and manipulating photons in an atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
[Crossref]

Science (1)

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284 (1997).
[Crossref]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Polarization selection rule for the lh transition. (b) Polarization configuration for the EIT scheme. Both the control and the probe propagate in the QW waveguide along the y-axis.

Fig. 2.
Fig. 2.

The susceptibility associated with the usual EIT process as a function of probe detuning. Solid line: imaginary part; dashed line: real part.

Fig. 3.
Fig. 3.

The susceptibility associated with the coherent wave mixing process as a function of probe detuning. The units are the same as in Fig. 2. Solid line: imaginary part; dashed line: real part.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

H 0 = ħ ω a a a + ħ ω b b b + ħ ω c c c + ħ ω d d d ,
ν = ħ [ Ω 1 2 e i ν 1 t a b + Ω 2 e i ν t a c + Ω 1 2 e i ν 1 t d c + Ω + 2 e i ν t d b + h . c . ] ,
ρ ab = A e i ν 1 t + B e i ( 2 ν ν 1 ) t , ρ dc = A e i ν 1 t + B e i ( 2 ν ν 1 ) t ,
ρ db = C e i ν t , ρ ac = C e i ν t ,
ρ ad = X e i ( ν ν 1 ) t + Y e i ( ν ν 1 ) t ,
A ˙ ( 1 ) = ( i Δ 1 + γ ) A ( 1 ) i Ω 1 2 ( ρ aa ( 0 ) ρ bb ( 0 ) ) i Ω + 2 X ( 1 ) ,
X ˙ ( 1 ) = ( i Δ 1 + γ ad ) X ( 1 ) + i Ω 1 2 C * ( 0 ) i Ω + 2 A ( 1 ) + i Ω 2 B * ( 1 ) ,
B ˙ ( 1 ) = ( i Δ 1 γ ) B ( 1 ) i Ω 2 X * ( 1 ) ,
C ˙ ( 0 ) = γ C ( 0 ) i Ω + 2 ( ρ dd ( 0 ) ρ bb ( 0 ) ) ,
ρ ˙ aa ( 0 ) = Γ ρ aa ( 0 ) i Ω 2 ( C ( 0 ) C * ( 0 ) ) ,
A ( 1 ) = i ( i Δ 1 + γ ) Ω 1 2 ( 1 + I ) { I Ω + 2 4 i Δ 1 + γ ad + ( Ω + 2 + Ω 2 ) 4 i Δ 1 + γ [ 1 γ + 1 ( i Δ 1 + γ ) ] } ,
B ( 1 ) = i ( i Δ 1 γ ) Ω 1 * 2 ( 1 + I ) { Ω Ω + 4 i Δ 1 + γ ad + ( Ω + 2 + Ω 2 ) 4 i Δ 1 + γ [ 1 γ + 1 ( i Δ 1 + γ ) ] } ,
χ ( ν 1 ) = [ A ( 1 ) ( ν 1 ) + A ( 1 ) ( ν 1 ) ] N μ 2 ħ Ω 1 ( ν 1 ) ,
χ ¯ ( ν 1 ) = [ B ( 1 ) ( ν 1 ) + B ( 1 ) ( ν 1 ) N μ 2 ] ħ Ω 1 * ( ν 1 ) ,

Metrics