Abstract

We propose and analyze a novel scheme to realize electromagnetically induced transparency (EIT) via robust electron spin coherence in semiconductor quantum wells. This scheme uses light hole transitions in a quantum well waveguide to induce electron spin coherence in the absence of an external magnetic field. For certain polarization configurations, the light hole transitions form a crossed double-V system. EIT in this system is strongly modified by a coherent wave mixing process induced by the electron spin coherence.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. E. Harris, �??Electromagnetically induced transparency,�?? Phys. Today 50(7), 36-42 (1997).
    [CrossRef]
  2. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).
  3. E. Arimondo, �??Coherent population trapping in laser spectroscopy,�?? Progress in Optics 35, 257 (1996).
    [CrossRef]
  4. For a recent review see for example, M. D. Lukin, �??Trapping and manipulating photons in an atomic ensembles,�?? Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
    [CrossRef]
  5. R. Binder and M. Lindberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477 (1998).
    [CrossRef]
  6. M. Phillips and H. Wang, �??Spin coherence and electromagnetically induced transparency via exciton correlations,�?? Phys. Rev. Lett. 89, 186401 (2002).
    [CrossRef] [PubMed]
  7. M. Phillips and H. Wang, �??Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,�?? Opt. Lett. 28, 831 (2003).
    [CrossRef] [PubMed]
  8. M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, �??Electromagnetically induced transparency in semiconductors via biexciton coherence,�?? Phys. Rev. Lett. 91, 183602 (2003).
    [CrossRef] [PubMed]
  9. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, D. D. Awschalom, �??Room-temperature spin memory in twodimensional electron gases,�?? Science 277, 1284 (1997).
    [CrossRef]
  10. For a recent review, see J. M. Kikkawa, and D. D. Awschalom, �??Electron spin and optical coherence in semiconductors,�?? Phys. Today 52(6), 33 (1999).
    [CrossRef]
  11. A. P. Heberle, W. W. Ruhle, and K. Ploog, �??Quantum beats of electron Larmor precession in GaAs wells�??, Phys. Rev. Lett. 72, 3887 (1994).
    [CrossRef] [PubMed]
  12. A. Imamoglu, �??Electromagnetically induced transparency with two dimensional electron spins,�?? Opt. Comm. 179, 179 (2000).
    [CrossRef]

Opt. Comm.

A. Imamoglu, �??Electromagnetically induced transparency with two dimensional electron spins,�?? Opt. Comm. 179, 179 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

M. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, �??Electromagnetically induced transparency in semiconductors via biexciton coherence,�?? Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

R. Binder and M. Lindberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477 (1998).
[CrossRef]

M. Phillips and H. Wang, �??Spin coherence and electromagnetically induced transparency via exciton correlations,�?? Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef] [PubMed]

A. P. Heberle, W. W. Ruhle, and K. Ploog, �??Quantum beats of electron Larmor precession in GaAs wells�??, Phys. Rev. Lett. 72, 3887 (1994).
[CrossRef] [PubMed]

Phys. Today

For a recent review, see J. M. Kikkawa, and D. D. Awschalom, �??Electron spin and optical coherence in semiconductors,�?? Phys. Today 52(6), 33 (1999).
[CrossRef]

S. E. Harris, �??Electromagnetically induced transparency,�?? Phys. Today 50(7), 36-42 (1997).
[CrossRef]

Progress in Optics

E. Arimondo, �??Coherent population trapping in laser spectroscopy,�?? Progress in Optics 35, 257 (1996).
[CrossRef]

Rev. Mod. Phys.

For a recent review see for example, M. D. Lukin, �??Trapping and manipulating photons in an atomic ensembles,�?? Rev. Mod. Phys. 75, 457 (2003). See also the extensive references cited there.
[CrossRef]

Science

J. M. Kikkawa, I. P. Smorchkova, N. Samarth, D. D. Awschalom, �??Room-temperature spin memory in twodimensional electron gases,�?? Science 277, 1284 (1997).
[CrossRef]

Other

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Univ. Press, Cambridge, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Polarization selection rule for the lh transition. (b) Polarization configuration for the EIT scheme. Both the control and the probe propagate in the QW waveguide along the y-axis.

Fig. 2.
Fig. 2.

The susceptibility associated with the usual EIT process as a function of probe detuning. Solid line: imaginary part; dashed line: real part.

Fig. 3.
Fig. 3.

The susceptibility associated with the coherent wave mixing process as a function of probe detuning. The units are the same as in Fig. 2. Solid line: imaginary part; dashed line: real part.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

H 0 = ħ ω a a a + ħ ω b b b + ħ ω c c c + ħ ω d d d ,
ν = ħ [ Ω 1 2 e i ν 1 t a b + Ω 2 e i ν t a c + Ω 1 2 e i ν 1 t d c + Ω + 2 e i ν t d b + h . c . ] ,
ρ ab = A e i ν 1 t + B e i ( 2 ν ν 1 ) t , ρ dc = A e i ν 1 t + B e i ( 2 ν ν 1 ) t ,
ρ db = C e i ν t , ρ ac = C e i ν t ,
ρ ad = X e i ( ν ν 1 ) t + Y e i ( ν ν 1 ) t ,
A ˙ ( 1 ) = ( i Δ 1 + γ ) A ( 1 ) i Ω 1 2 ( ρ aa ( 0 ) ρ bb ( 0 ) ) i Ω + 2 X ( 1 ) ,
X ˙ ( 1 ) = ( i Δ 1 + γ ad ) X ( 1 ) + i Ω 1 2 C * ( 0 ) i Ω + 2 A ( 1 ) + i Ω 2 B * ( 1 ) ,
B ˙ ( 1 ) = ( i Δ 1 γ ) B ( 1 ) i Ω 2 X * ( 1 ) ,
C ˙ ( 0 ) = γ C ( 0 ) i Ω + 2 ( ρ dd ( 0 ) ρ bb ( 0 ) ) ,
ρ ˙ aa ( 0 ) = Γ ρ aa ( 0 ) i Ω 2 ( C ( 0 ) C * ( 0 ) ) ,
A ( 1 ) = i ( i Δ 1 + γ ) Ω 1 2 ( 1 + I ) { I Ω + 2 4 i Δ 1 + γ ad + ( Ω + 2 + Ω 2 ) 4 i Δ 1 + γ [ 1 γ + 1 ( i Δ 1 + γ ) ] } ,
B ( 1 ) = i ( i Δ 1 γ ) Ω 1 * 2 ( 1 + I ) { Ω Ω + 4 i Δ 1 + γ ad + ( Ω + 2 + Ω 2 ) 4 i Δ 1 + γ [ 1 γ + 1 ( i Δ 1 + γ ) ] } ,
χ ( ν 1 ) = [ A ( 1 ) ( ν 1 ) + A ( 1 ) ( ν 1 ) ] N μ 2 ħ Ω 1 ( ν 1 ) ,
χ ¯ ( ν 1 ) = [ B ( 1 ) ( ν 1 ) + B ( 1 ) ( ν 1 ) N μ 2 ] ħ Ω 1 * ( ν 1 ) ,

Metrics