Abstract

Ultrahigh resolution, real time OCT imaging is demonstrated using a compact femtosecond Nd:Glass laser that is spectrally broadened in a high numerical aperture single mode fiber. A reflective grating phase delay scanner enables broad bandwidth, high-speed group delay scanning. We demonstrate in vivo, ultrahigh resolution, real time OCT imaging at 1 µm center wavelength with <5 µm axial resolution in free space (<4 µm in tissue). The light source is robust, portable, and well suited for in vivo imaging studies.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  3. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nature Medicine 4, 861-865 (1998).
    [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  5. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  6. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, �??Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,�?? Opt. Lett. 27, 2010-2012 (2002).
    [CrossRef]
  7. I. Hartl, X. D. Li, C. Chudoba, R. Ghanta, T. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh- resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  8. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett., 28, 182-184 (2003).
    [CrossRef] [PubMed]
  9. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  10. Y. Wang, J. Stuart Nelson, Z. Chen, B. J. Reiser, R. S. chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411</a>
    [CrossRef] [PubMed]
  11. F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," Special Issue on Ultrafast Electronics, Photonics and Optoelectronics, IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
    [CrossRef]
  12. D. Kopf, F. X. Kärtner, K. J. Weingarten, and U. Keller, "Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber," Opt. Lett. 20, 1169-1171 (1995).
    [CrossRef] [PubMed]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor Saturable Absorber Mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  14. I. Hartl, A. M. Kowalevicz, P.-L. Hsiung, T. H. Ko, T. Schibli, F.X. Kärtner, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting and D. Kopf., "Ultrahigh resolution optical coherence tomography using novel femtosecond laser sources," in Ultrafast Phenomena XIII, Editors R. D. Miller, M.M. Murnane, N.F. Scherer, A.M. Weiner, Springer Verlag, Berlin Heidelberg 2003, pp. 660-662.
  15. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating- based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  16. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, "Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. 22, 682-696 (1986).
    [CrossRef]
  17. S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
    [CrossRef]
  18. A. V. Zvyagin and D. D. Sampson, "Achromatic optical phase shifter-modulator," Opt. Lett. 26, 187-189 (2001).
    [CrossRef]
  19. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904-1 -4 (2003).
    [CrossRef] [PubMed]
  20. A. Rollins, J. Izatt, M. Kulkarni, S. Yazdanfar, and R. Ung-arunyawee, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-221 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  21. A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]

IEEE J. Quantum Electron. (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, "Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. 22, 682-696 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," Special Issue on Ultrafast Electronics, Photonics and Optoelectronics, IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor Saturable Absorber Mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Nature Medicine (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nature Medicine 4, 861-865 (1998).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (10)

A. V. Zvyagin and D. D. Sampson, "Achromatic optical phase shifter-modulator," Opt. Lett. 26, 187-189 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. Ghanta, T. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh- resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, �??Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,�?? Opt. Lett. 27, 2010-2012 (2002).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett., 28, 182-184 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

D. Kopf, F. X. Kärtner, K. J. Weingarten, and U. Keller, "Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber," Opt. Lett. 20, 1169-1171 (1995).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating- based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90, 113904-1 -4 (2003).
[CrossRef] [PubMed]

Review of Scientific Instruments (1)

S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Ultrafast Phenomena XIII (1)

I. Hartl, A. M. Kowalevicz, P.-L. Hsiung, T. H. Ko, T. Schibli, F.X. Kärtner, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting and D. Kopf., "Ultrahigh resolution optical coherence tomography using novel femtosecond laser sources," in Ultrafast Phenomena XIII, Editors R. D. Miller, M.M. Murnane, N.F. Scherer, A.M. Weiner, Springer Verlag, Berlin Heidelberg 2003, pp. 660-662.

Supplementary Material (2)

» Media 1: MOV (2155 KB)     
» Media 2: MOV (2347 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Ultrahigh resolution, real time, OCT system using a femtosecond diode pumped Nd:Glass laser with a high numerical aperture fiber and a broadband grating based phase delay scanner. AS: aspheric lens, NA: numerical aperture, L1–L5: chromatically corrected doublet, FC1,2: 3dB 2×2 fiber coupler, PC1,2: polarization controller, A: air gap, D1,2: InGaAs photodiode, PR: prisms, M: mirror, DM: mirror for double-pass configuration, G: grating, CM: curved mirror, GM: galvanometer controlled mirror, XG: x-galvanometer.

Fig. 2.
Fig. 2.

Top and side views of the reflective grating phase delay line for high speed imaging. The double pass mirror allows doubling the axial scan range and coupling back the light beam into the fiber.

Fig. 3.
Fig. 3.

(a) Plot of the optical spectrum of the Nd:Glass laser broadened in the high numerical aperture (NA) single mode fiber. (b) Comparison of RF noise spectrum for the Nd:Glass pump laser to that of the continuum generated in the high NA fiber.

Fig. 4.
Fig. 4.

(a) Plot of the interference signal and (b) measurement of the axial resolution using a 150 µm thick (225 µm optical thickness) microscope cover glass test sample. (c) Corresponding log demodulated signal. A 1.5 ND filter was inserted in the sample arm to avoid detector saturation.

Fig. 5.
Fig. 5.

In vivo ultrahigh resolution OCT images at 1 µm wavelength. Images were acquired at 4 frames per second and are 2.5 mm transverse × 1.2 mm axial with 11 µm×4 µm resolution. (a,b) Images of the hamster cheek pouch showing squamous epithelium and connective tissue as well as a junction between two vessels. (c) Image of the nail bed showing the stratum corneum and the junction between the epidermis and the dermis. (d) Image of human volar finger pad showing stratum corneum and sweat ducts.

Fig. 6.
Fig. 6.

Movie from in vivo ultrahigh resolution images acquired at 4 frames per second. (a) (2.1 MB) 2D images of human volar finger pad with sweat ducts (1.9 mm×1.3 mm). (b) (2.3 MB) Sequence of transverse images of a tadpole in water scanned from the posterior to the anterior (1.8 mm×1.5 mm).

Metrics