Abstract

We report on the realization and characterization of highly efficient waveguide bends in photonic crystals made of materials with a low in-plane index contrast. By applying an appropriate bend design photonic crystal bends with a transmission of app. 75 % per bend were fabricated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, U. Oesterle �??Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,�?? App. Phys. Lett. 79, 3579-3581 (2001)
    [CrossRef]
  2. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, �??Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,�?? J. Lightwave Technol. 20, 1198-1203 (2002)
    [CrossRef]
  3. A.Talneau, L.Le Gouezigou, N.Bouadma, M. Kafesaki, C. M. Soukoulis and M. Agio �??Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,�?? App. Phys. Lett. 80, 547 (2002)
    [CrossRef]
  4. M.Mulot, S.Anand, M.Swillo, M.Qiu, B.Jaskorzynska �??Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,�?? J. Vac. Sci. Techn. B 21, 900-903 (2003)
    [CrossRef]
  5. A.Talneau, L.Le Gouezigou, N.Bouadma �??Quantitative measurement of low propagation losses at 1.55µm on planar photonic crystal waveguides,�?? Opt. Lett. 26, 1259 (2001)
    [CrossRef]
  6. C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, U. Oesterle �??Low-loss channel waveguides with two-dimensional photonic crystal boundaries,�?? App. Phys. Lett. 77, 2813 (2000)
    [CrossRef]
  7. S.Olivier, H.Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, R.Houdré, �??Coupled-mode theory and propagation loss in photonic crystal waveguides,�?? Opt. Express 11, 1490-1496 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490</a>.
    [CrossRef] [PubMed]
  8. M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, A. Tünnermann, �??High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,�?? App. Phys. Lett., in submission
  9. P. Lalanne "Electromagnetic analysis of photonic crystal waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800�??804 (2002)
    [CrossRef]
  10. Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B 62, 8212 (2000)
    [CrossRef]
  11. Min Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? Appl. Phys. Lett. 81, 1163 (2002).
    [CrossRef]
  12. Steven G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]

App. Phys. Lett. (4)

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, U. Oesterle �??Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,�?? App. Phys. Lett. 79, 3579-3581 (2001)
[CrossRef]

A.Talneau, L.Le Gouezigou, N.Bouadma, M. Kafesaki, C. M. Soukoulis and M. Agio �??Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,�?? App. Phys. Lett. 80, 547 (2002)
[CrossRef]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, U. Oesterle �??Low-loss channel waveguides with two-dimensional photonic crystal boundaries,�?? App. Phys. Lett. 77, 2813 (2000)
[CrossRef]

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, A. Tünnermann, �??High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,�?? App. Phys. Lett., in submission

Appl. Phys. Lett. (1)

Min Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? Appl. Phys. Lett. 81, 1163 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Lalanne "Electromagnetic analysis of photonic crystal waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800�??804 (2002)
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Techn. B (1)

M.Mulot, S.Anand, M.Swillo, M.Qiu, B.Jaskorzynska �??Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,�?? J. Vac. Sci. Techn. B 21, 900-903 (2003)
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B 62, 8212 (2000)
[CrossRef]

Supplementary Material (2)

» Media 1: GIF (2637 KB)     
» Media 2: GIF (3461 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

3D band structure of the PC slab system (left) and a 2D effective index band structure calculation for the W3-PCWG (right). The diameter of the holes is 374 nm at a lattice pitch of 595 nm.

Fig. 2.
Fig. 2.

Transmission of a W3-PCWG double bend (3D-FDTD calculations, TE polarized excitation) for three different bend designs (unaltered bend, three holes shifted and three extra holes inserted at the bend).

Fig. 3.
Fig. 3.

(left: 1.45MB, right: 1.74MB) 3D-FDTD simulation of a 60° double bend excited at 1509 nm, where a high transmission of ~ 80% per bend are observed (cross section at the center of waveguiding layer, left original computing window, right blow-up of lower bend). Alternatively animations of higher quality can be obtained, (2.58 MB) and (3.38 MB).

Fig. 4.
Fig. 4.

SEM images of the fabricated W3-PCWG consisting of holes with a diameter of 370 nm and a depth of 1100 nm (aspect ratio of 1:3) in a hexagonal lattice of period 595 nm. The wall angle in the holes amounts to 85°.

Fig. 5.
Fig. 5.

SEM-images of the W3-PCWG double bend with the optimized (top left, right) and with the unaltered bend (bottom left). The PC consists of holes with a diameter of 360nm and a depth of 1.1 µm at a lattice pitch of 595 nm.

Fig. 6.
Fig. 6.

Measured bend efficiencies for the optimized bend in comparison with 3D-FDTD simulations.

Metrics