Abstract

A novel polarization-sensitive optical coherence tomography (PS-OCT) system was developed using polarization maintaining (PM) optical fibers and fiber coupler to measure birefringence properties of samples. Polarization distortion due to PM fibers and coupler can be calibrated with different polarization states during two consecutive A-scans. By processing the analytical interference fringe signals derived from two orthogonal polarization detection channels, the system can be used to measure phase retardation and optic axis orientation. Standard wave plates with different orientation and retardation were used as samples to test the system and calibrating method. We have also applied this system to image biological sample such as beef tendon.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  4. M. J. Everett, K. Schoenenberger, B. W. Colston Jr., L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998).
    [CrossRef]
  5. S. Jiao, G. Yao, and L. V. Wang, �??Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,�?? Opt. Lett. 27, 101-103 (2002).
    [CrossRef]
  6. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  7. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, �??In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 27, 1610 -1612 (2002).
    [CrossRef]
  8. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, �??In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 6, 474-479 (2001).
    [CrossRef] [PubMed]
  9. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
    [CrossRef]
  10. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett., 28, 1206-1208 (2003).
    [CrossRef] [PubMed]
  11. D.P. Davé, T. Akkin, T.E.Milner and H.G. Rylander III, �??Phase-sensitive frequency-multiplexed optical low-coherence reflectometery�?? Opt. Commun. 193, 39-43 (2001).
    [CrossRef]
  12. C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley & Sons, Inc., 1998), Chap. 3.
  13. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]

J. Biomed. Opt.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, �??In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Commun.

D.P. Davé, T. Akkin, T.E.Milner and H.G. Rylander III, �??Phase-sensitive frequency-multiplexed optical low-coherence reflectometery�?? Opt. Commun. 193, 39-43 (2001).
[CrossRef]

Opt. Lett.

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
[CrossRef]

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett., 28, 1206-1208 (2003).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston Jr., L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998).
[CrossRef]

S. Jiao, G. Yao, and L. V. Wang, �??Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,�?? Opt. Lett. 27, 101-103 (2002).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, �??In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 27, 1610 -1612 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley & Sons, Inc., 1998), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the PM fiber-based PS-OCT system. SLD: superluminescent diode at 1310nm with a FWHM bandwidth of 80 nm. P: Vertically polarized in line polarizer. Pol. Mod.: polarization modulator, Phase Mod.: phase modulator, PBS: polarization beam splitter, RSOD: rapid scanning optical delay line, Galvo: Galvanometer scanner, D1, D2: detectors. Amp1, Amp2: low noise preamplifier.

Fig. 2.
Fig. 2.

Poincaré’s sphere showing the polarization states of the light. S1 and S2 are the Stokes vectors of the light after the polarization modulator in the forward propagation. S’1 and S’2 show the possible polarization states of the light reflected from the surface before the polarization modulator in the backward propagation. S”1 and S”2 are the possible Stokes vectors of the reflected light from the surface after the PM coupler in the backward propagation.

Fig. 3.
Fig. 3.

(a) Measured fast axis orientation as a function of set orientation from 0° to 180° in steps of 10° for different wave plates. The solid line represents the set orientation and the points represent the measured orientation; (b) Measured retardation versus the actual retardation for a fast axis orientation of 80°. The retardation values of the wave plates for measurement are 45°, 55°, 70°, 90°and 143° respectively. The solid line represents the actual retardation and the points represent the measured retardation.

Fig. 4.
Fig. 4.

Images of the intensity, phase retardation and optic axis orientation in beef tendon. (a): structural (intensity) image; (b): phase retardation image; (c): fast axis orientation image;

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S = [ I Q U V ] = [ a x 2 + a y 2 a x 2 a y 2 2 a x a y cos φ 2 a x a y sin φ ]
S 2 = [ I 2 Q 2 U 2 V 2 ] = M S 1 = [ M 00 M 01 M 02 M 03 M 10 M 11 M 12 M 13 M 20 M 21 M 22 M 23 M 30 M 31 M 32 M 33 ] [ I 1 Q 1 U 1 V 1 ]
S o = M c M mod M pf M s M pf M mod S i
M c = [ 1 0 0 0 0 1 0 0 0 0 cos γ sin γ 0 0 sin γ cos γ ]
M mod = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] or M mod = [ 1 0 0 0 0 2 2 0 2 2 0 0 1 0 0 2 2 0 2 2 ]
M pf = [ 1 0 0 0 0 cos δ f 0 sin δ f 0 0 1 0 0 sin δ f 0 cos δ f ]
M s = [ 1 0 0 0 0 1 ( 1 cos δ ) sin 2 2 θ ( 1 cos δ ) sin 2 θ cos 2 θ sin δ sin 2 θ 0 ( 1 cos δ ) sin 2 θ cos 2 θ 1 ( 1 cos δ ) cos 2 2 θ sin δ cos 2 θ 0 sin δ sin 2 θ sin δ cos 2 θ cos δ ]

Metrics