Abstract

A computer model using a finite element technique was written to model the behavior of a chalcogenide fiber Raman laser. The model demonstrates the feasibility of a middle infrared fiber Raman laser pumped at 5.59-µm by a carbon monoxide laser and operating at a wavelength of 6.46-µm. This wavelength may be of interest in surgical applications since it corresponds to the amide II absorption. Calculations show slope efficiencies can approach 80% with moderate threshold powers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, �??Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,�?? J. Lightwave Technol. 14, 743-748 (1996).
    [CrossRef]
  2. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, �??Small-core As-Se fiber for Raman amplification,�?? Optics Letters 28, 1406-1408 (2003).
    [CrossRef] [PubMed]
  3. V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, �??Fabrication of Arsenic Selenide optical fiber with low Hydrogen impurities,�?? J. Am. Ceram. Soc. 85, 2849-2851 (2002).
    [CrossRef]
  4. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Wekhaven, and D. O�??Day, �??Tissue ablation by a free-electron laser tuned to the amide II band,�?? Nature 371, 416-418 (1994).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chap. 8.
  6. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, �??Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,�?? International Journal of Optoelectronics 7, 237-254 (1992).

International Journal of Optoelectronics

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, �??Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibres,�?? International Journal of Optoelectronics 7, 237-254 (1992).

J. Am. Ceram. Soc.

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, �??Fabrication of Arsenic Selenide optical fiber with low Hydrogen impurities,�?? J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

J. Lightwave Technol.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, �??Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,�?? J. Lightwave Technol. 14, 743-748 (1996).
[CrossRef]

Nature

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Wekhaven, and D. O�??Day, �??Tissue ablation by a free-electron laser tuned to the amide II band,�?? Nature 371, 416-418 (1994).
[CrossRef] [PubMed]

Optics Letters

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, �??Small-core As-Se fiber for Raman amplification,�?? Optics Letters 28, 1406-1408 (2003).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Typical loss spectrum of an As-Se fiber taken with a Fourier transform infrared spectrometer.

Fig. 2.
Fig. 2.

Diagram of the finite element technique showing the laser cavity divided into N sections each of length ΔL.

Fig. 3.
Fig. 3.

Calculated Raman laser output versus pump laser input for As-Se fiber with a loss of 0.3-dB/m. The calculated slope efficiencies are 37%, 53%, 62%, and 67% for output coupling of 10%, 20%, 30%, and 40% respectively.

Fig. 4.
Fig. 4.

Calculated Raman laser output versus pump laser input for As-Se fiber with a loss of 0.1-dB/m. The calculated slope efficiencies are 60%, 71%, 76%, and 79% for output coupling of 10%, 20%, 30%, and 40% respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d I s d z = g R I p I S α S I S
d I P d z = ω P ω S g R I p I S α P I P
S n + 1 = ( g R P n S n A eff α S S n ) Δ L + S n
S ' n 1 = ( g R P n S ' n A eff α S S ' n ) Δ L + S ' n
P n + 1 = ( ω P ω S g R P n ( S n + S n ' ) A eff α S P n ) Δ L + P n
λ c = 2 π a 2.405 · N A
w 0 = a ( 0.65 + 1.619 V 1.5 + 2.879 V 6 )

Metrics