Abstract

We analyze an optical system after inserting a simple quartic phase plate in its pupil plane to extend the focal depth. The system is used specifically to track distant objects like stars. We design an optimum quartic phase plate for a real lens system which has an effective focal length of 29 mm, an F-number of 1.6, a field of view of 20 degrees, and a working wavelength range of 0.5~0.75 µm. By introducing the quartic phase plate, we enhance the focal depth of the system more than threefold as compared to a system having no phase plate.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bifocal optical system for distant object tracking

Xinping Liu, Xianyang Cai, Shoude Chang, and Chander P. Grover
Opt. Express 13(1) 136-141 (2005)

Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time

Ting Sun, Fei Xing, Zheng You, Xiaochu Wang, and Bin Li
Opt. Express 22(5) 6009-6024 (2014)

Simulation analysis of dynamic working performance for star trackers

Juan Shen, Guangjun Zhang, and Xinguo Wei
J. Opt. Soc. Am. A 27(12) 2638-2647 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (April 2002).
    [Crossref]
  2. G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
    [Crossref]
  3. Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica, 53, 135–147 (2003).
    [Crossref]
  4. Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (June 1995).
    [Crossref]
  5. Kazuhide Noguchi and Koshi Satoet al., “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
    [Crossref]
  6. Joseph F. Kordas and Isabella T. Lewiset al., “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
    [Crossref]
  7. Dobryna Zalvidea and Enrique E. Sicre, “Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function,” Appl. Opt. 37, 3623–3627 (1998).
    [Crossref]

2003 (1)

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica, 53, 135–147 (2003).
[Crossref]

1998 (1)

1996 (1)

Kazuhide Noguchi and Koshi Satoet al., “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

1995 (1)

Joseph F. Kordas and Isabella T. Lewiset al., “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

1994 (1)

G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Accardo, Domenico

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica, 53, 135–147 (2003).
[Crossref]

Borghi, G.

G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Kordas, Joseph F.

Joseph F. Kordas and Isabella T. Lewiset al., “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Lewis, Isabella T.

Joseph F. Kordas and Isabella T. Lewiset al., “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Liebe, Carl Christian

Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (April 2002).
[Crossref]

Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (June 1995).
[Crossref]

Magnani, M.

G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Noguchi, Kazuhide

Kazuhide Noguchi and Koshi Satoet al., “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Procopio, D.

G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Rufino, Giancarlo

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica, 53, 135–147 (2003).
[Crossref]

Sato, Koshi

Kazuhide Noguchi and Koshi Satoet al., “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Sicre, Enrique E.

Zalvidea, Dobryna

Acta Astronautica, (1)

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica, 53, 135–147 (2003).
[Crossref]

Appl. Opt. (1)

IEEE Transactions on Aerospace and Electronic Systems (1)

Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (April 2002).
[Crossref]

Proc. SPIE (3)

G. Borghi, D. Procopio, and M. Magnaniet al., “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Kazuhide Noguchi and Koshi Satoet al., “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Joseph F. Kordas and Isabella T. Lewiset al., “Star tracker stellar compass for the Clementine mission,” Proc. SPIE 2466, 70–83 (1995).
[Crossref]

Other (1)

Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (June 1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

On-axis intensity for different values of z.

Fig. 2.
Fig. 2.

Fraction of enclosed energy for a diameter of 30 µm and different values of α.

Fig. 3.
Fig. 3.

Configuration of an optical system comprising no phase plate.

Fig. 4.
Fig. 4.

Spot size containing 80% energy in an optical system comprising no quartic phase plate for different defocus values.

Fig. 5.
Fig. 5.

OPD curves of an optical system with a quartic phase plate.

Fig. 6.
Fig. 6.

Spot size containing 80% energy in an of the optical system comprising a quartic phase plate for different values of axis distance

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d 0 = 2.44 λ F .
z = DF ,
ϕ ( ρ ) = π · α · ( ρ 4 ρ 0 4 ρ 2 ρ 0 2 ) ,
I ( r , z ) = 2 π 0 ρ 0 J 0 ( 2 π λ 0 · r f 0 · ρ ) exp [ i · π · α · ( ρ 4 ρ 0 4 ρ 2 ρ 0 2 ) ] exp ( i π λ 0 · f 0 2 · z · ρ 2 ) ρ d ρ 2 .
I ( 0 , z ) = 2 π 0 ρ 0 exp [ i · π · α · ( ρ 4 ρ 0 4 ρ 2 ρ 0 2 ) ] exp ( i π λ 0 · f 0 2 · z · ρ 2 ) ρ d ρ 2 .
RED ( c ) = 0 c 2 π · I ( r ) · r · d r 0 2 π · I ( r ) · r · d r .
ϕ ( ρ ) = ± π · 28 · ( ρ 4 ρ 0 4 ρ 2 ρ 0 2 ) .
ϕ ( ρ ) = π · 22.3 · [ ( ρ 4 ρ 0 4 ) ( ρ 2 ρ 0 2 ) ] .
ϕ ( ρ ) = π · [ α 1 · ( ρ 4 ρ 0 4 ) α 2 · ( ρ 2 ρ 0 2 ) ] .

Metrics