Abstract

We report an all-fiber diode-pumped Erbium-fiber oscillator-amplifier system as a source for supercontinuum generation in a photonic crystal fiber at 1560 nm. The passively mode-locked oscillator-amplifier system provides linearly polarized output pulses of 60 fs and an average output power of 59 mW at a repetition rate of 59.1 MHz. The laser pulses were launched into an extruded SF6-fiber for generation of an ultrabroadband supercontinuum. The evolution of the supercontinuum as a function of launched pulse energy was investigated. With pulse energies of about 200 pJ we observed a more than octave-spanning supercontinuum from 400 nm to beyond 1750 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.-P. Martin Man, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  2. H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
    [CrossRef]
  3. R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??An optical frequency synthesiser for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
    [CrossRef] [PubMed]
  4. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency syntheses,�?? Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  5. I. Hartl, X. D. Li, C. Chudoba, R. Ghanta, T. Ko, J.G. Fujimoto, J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
    [CrossRef]
  6. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, �??Compact, broad-bandwidth fiber laser for sub-2-micrometer axial resolution optical coherence tomography in the 1300-nm wavelength region,�?? Opt. Lett. 28, 707-709 (2003).
    [CrossRef] [PubMed]
  7. N. Nishizawa, and T. Goto, �??Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
    [CrossRef]
  8. F. Tauser, A. Leitensdorfer, and W. Zinth, �??Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution,�?? Opt. Express 11, 594-600 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594</a>.
    [CrossRef] [PubMed]
  9. J.W. Nicholson, M.F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jorgensen, and T. Veng, �??All-fiber, octave-spanning supercontinuum,�?? Opt. Lett. 28, 643-645 (2003).
    [CrossRef] [PubMed]
  10. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, �??Supercontinuum generation at 1.55 µm in a dispersion-flattened polarization-maintaining photonic crystal fiber,�?? Opt. Express 11, 1537-1540 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537</a>.
    [CrossRef] [PubMed]
  11. F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellström, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, �??Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,�?? Electron. Lett. 38, 561-563 (2002).
    [CrossRef]
  12. K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  13. V.V. Ravi Kanth Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.St.J. Russell, F.G. Omenetto, and A.J. Taylor: �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>.
    [CrossRef] [PubMed]

Appl. Phys. B

H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Electron. Lett.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellström, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, �??Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,�?? Electron. Lett. 38, 561-563 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Nishizawa, and T. Goto, �??Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??An optical frequency synthesiser for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
[CrossRef] [PubMed]

Science

D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency syntheses,�?? Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic experimental setup of the all-fiber Erbium oscillator-amplifier setup and the photonic crystal fiber (PCF) for supercontinuum generation: Green fiber=Er-doped fiber, black fiber=SMF 1528, blue fiber=Flexcor 1060, red fiber=SF6 PCF, PBS=polarization beam splitter, PC=polarization controller, ISO=Faraday isolator, WDM=980/1550nm-wavelength-division-multiplexer, DC=diagnostic coupler, M1=dichroic mirror HR980nm-HT1550nm

Fig. 2.
Fig. 2.

(a) Intensity autocorrelation function of the fiber laser (autocorrelation function width of 90 fs resulting in 64 fs pulse duration assuming a Gaussian pulse profile); (b) Output spectrum of the fiber laser; (c) Intensity autocorrelation of the amplifier (autocorrelation function width of 85 fs resulting in 60 fs pulse duration assuming a Gaussian shape profile); (d) Output spectrum of the fiber amplifier

Fig. 3.
Fig. 3.

Optical spectrum of the all-fiber oscillator-amplifier system (OAS) before the PCF and optical spectra of different launched pulse energies after 30 cm of extruded SF6-fiber

Fig. 4.
Fig. 4.

Spectrum measured with an OSA (above) and digital picture of the visible spectrum of the generated supercontinuum separated by a SF10 prism (below). The letters indicate the relation between the observed wavelengths at 550 nm, 600 nm and 800 nm.

Metrics