Abstract

Coupling characteristics of dual-core photonic crystal fiber (PCF) couplers are evaluated by using a vector finite element method and their application to a multiplexer-demultiplexer (MUX-DEMUX) based on PCF is investigated. The PCF couplers for 1.48/1.55-µm, 1.3/1.55-µm, 0.98/1.55-µm, and 0.85/1.55-µm wavelength MUX-DEMUX are designed and the beam propagation analysis of the proposed PCF couplers is performed. It is shown from numerical results that it is possible to realize significantly shorter MUX-DEMUX PCFs, compared to conventional optical fiber couplers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: A new class of optical waveguides,�?? Opt. Fiber Technol. 5, 305-330 (1999).
    [CrossRef]
  2. T.A. Birks, J.C. Knight, B.J. Mangan, and P.St.J. Russell, �??Photonic crystal fibers: An endless variety,�?? IEICE Trans. Electron. E84-C, 585-592 (2001).
  3. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  4. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  5. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic band gap guidance in optical fiber,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  6. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  7. J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fiber,�?? Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  8. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearlity in holey optical fibers: Measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  9. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P.St.J. Russell, "Experimantal measurement of group velocity dispersion in photonic crystal fibre,�?? Electron. Lett. 35, 63-64 (1999).
    [CrossRef]
  10. B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, and A.H. Greenaway, �??Experimental study of dualcore photonic crystal fibre,�?? Electron. Lett. 36, 1358-1359 (2000).
    [CrossRef]
  11. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, �??Full vectorial BPM modeling of indexguiding photonic crystal fibers and couplers,�?? Opt. Express 10, 54-59 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54</a>
    [CrossRef] [PubMed]
  12. B.H. Lee, J.B. Eom, J. Kim, D.S. Moon, U.-C. Paek, and G.-H. Yang, �??Photonic crystal fiber coupler,�?? Opt. Lett. 27, 812-814 (2002).
    [CrossRef]
  13. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  14. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, �??Chromatic dispersion control in photonic crystal fibers: application to ultra-flattend dispersion,�?? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>
    [CrossRef] [PubMed]
  15. K. Saitoh and M. Koshiba, �??Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,�?? J. Lightwave Technol. 19, 405-413 (2001).
    [CrossRef]
  16. F.L. Teixeira and W.C. Chew, �??General closed-form pml constitutive tensors to match arbitrary bianisotropic and dispersive linear media,�?? IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
    [CrossRef]
  17. M. Koshiba and Y. Tsuji, �??Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,�?? J. Lightwave Technol. 18, 737-743 (2000).
    [CrossRef]
  18. L. Zhang and C. Yang, �??Polarization splitter based on photonic crystal fibers,�?? Opt. Express 11, 1015-1020 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1015">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1015</a>
    [CrossRef] [PubMed]

Electron. Lett. (3)

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fiber,�?? Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P.St.J. Russell, "Experimantal measurement of group velocity dispersion in photonic crystal fibre,�?? Electron. Lett. 35, 63-64 (1999).
[CrossRef]

B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, and A.H. Greenaway, �??Experimental study of dualcore photonic crystal fibre,�?? Electron. Lett. 36, 1358-1359 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

F.L. Teixeira and W.C. Chew, �??General closed-form pml constitutive tensors to match arbitrary bianisotropic and dispersive linear media,�?? IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
[CrossRef]

IEICE Trans. Electron. (1)

T.A. Birks, J.C. Knight, B.J. Mangan, and P.St.J. Russell, �??Photonic crystal fibers: An endless variety,�?? IEICE Trans. Electron. E84-C, 585-592 (2001).

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: A new class of optical waveguides,�?? Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Opt. Lett. (4)

Science (2)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic band gap guidance in optical fiber,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross section of PCF surrounded by PMLs.

Fig. 2.
Fig. 2.

Curvilinear hybrid edge/nodal element.

Fig. 3.
Fig. 3.

Cross sections of PCF couplers of (a) Type 1 and (b) Type 2.

Fig. 4.
Fig. 4.

Coupling lengths of PCF couplers with d/Λ=0.5.

Fig. 5.
Fig. 5.

Hole-pitch dependence of coupling lengths, taking the value of d/Λ as a parameter.

Fig. 6.
Fig. 6.

Hole-pitch dependence of coupling lengths for PCF coupler with d/Λ=0.7, taking the operating wavelength as a parameter.

Fig. 7.
Fig. 7.

d/Λ-dependence of coupling-length ratios, where λ1=1.55 µm.

Fig. 8.
Fig. 8.

Demultiplexing characteristics of PCF couplers.

Tables (2)

Tables Icon

Table 1. PML parameters.

Tables Icon

Table 2. Parameters of photonic crystal fiber couplers, where λ1=1.55 µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× ( [ s ] 1 × E ) k 0 2 n 2 [ s ] E = 0
[ s ] = [ s y s x 0 0 0 s x s y 0 0 0 s x s y ]
s i = 1 j α i ( ρ t i ) 2
[ K ] { E } = β 2 [ M ] { E }
L = π β e β o .
L λ 1 : L λ 2 = even : odd
L λ 1 : L λ 2 = odd : even .

Metrics