Abstract

Metal sulfide dielectric thin films have been deposited using dynamic wet chemistry processing on silver coated hollow glass waveguides (HGWs). The sulfides used were cadmium sulfide (CdS) and lead sulfide (PbS); both films have excellent infrared transparency and high refractive index contrast. The thickness of these thin films can be tailored to minimize the attenuation of the HGW over specific infrared wavelengths. We have made both single and multiple dielectric (2 and 3 layer) metal coated HGWs using CdS and PbS deposited over an inner Ag layer. The straight lowest loss measured at 1.55 µm for a 1,000-µm bore Ag/CdS/PbS/CdS HGW was 0.06 dB/m. This loss is three times less than that measured for a single layer Ag/CdS coated HGW at 1.55 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E.D. Palik and G. Ghosh, Handbook of optical constants of solids, (Academic, London, 1998).
  2. Sopra database for n and k, <a href= "http://www.sopra-sa.com">http://www.sopra-sa.com (2003)
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  4. R. S Mane and C. D Lokhande, �??Chemical deposition method for metal chalcogenide thin films,�?? Mat. Chem. Phys. 65, 1-31 (2000).
    [CrossRef]
  5. P. K. Nair, M. T. S Nair, V. M Garcia, O. L Arenas, Y Pena, A Castillo, I. T Ayala, O Gomezdaza, A Sanchez, J Compos, H Hu, R Suarez, and M. E. Rincon, �??Semiconductor thin films by chemical bath deposition for solar energy related applications,�?? Solar Energy Materials and Solar Cells 52, 313-344 (1998).
    [CrossRef]
  6. P. C Rieke and S.B. Bentjen, �??Deposition of cadmium sulfide films by decomposition of thiourea in basic solution,�?? Chem. Mat. 5, 43-53 (1993).
    [CrossRef]
  7. V. Gopal, and J. A. Harrington, �??Dielectric coatings for Ag/dielectric hollow glass waveguides,�?? in Optical Fibers and Sensors for Medical Applications II, Proc. SPIE 4616, 143-151 (2002).
    [CrossRef]
  8. V. Gopal, and J.A. Harrington, �??Metal sulfide coatings for hollow glass waveguides,�?? in Optical Fibers and Sensors for Medical Applications III, Proc. SPIE 4957, 97-103 (2003)
    [CrossRef]
  9. M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission,�?? J. Lightwave Technol. LT-2, 116-126 (1984).
    [CrossRef]
  10. M Mohebbi, R Fedosejevs, V. Gopal, and J. A. Harrington, �??Silver-coated hollow-glass waveguide for applications at 800 nm,�?? Appl. Opt. 41, 7031-7035 (2002).
    [CrossRef] [PubMed]
  11. K. Matsuura, Y. Matsuura, and J. A. Harrington, �??Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,�?? Opt. Eng. 35, 3418-3421 (1996).
    [CrossRef]
  12. C. D. Rabii, D. J. Gibson, and J. A. Harrington, �??Processing and characterization of silver films used to fabricate hollow glass waveguides,�?? Appl. Opt. 38, 4486-4493 (1999).
    [CrossRef]
  13. T. Abel, J. Hirsch, and J. A. Harrington, �??Hollow glass waveguides for broadband infrared transmission,�?? Opt. Lett. 19, 1034-1036 (1994).
    [CrossRef] [PubMed]
  14. R. Dahan, J. Dror, and N. Croitoru, �??Characterization of chemically formed silver iodide layers for hollow infrared guides,�?? Mater. Res. Bull. 27, 761-766 (1992).
    [CrossRef]
  15. C. D. Rabii and J. A. Harrington, �??Measurement and control of thin film uniformity in hollow glass waveguides,�?? Opt. Eng. 38, 2009-2015 (1999).
    [CrossRef]
  16. M. Ohring, The materials science of thin films, (Academic Press, Boston, 1992)
  17. Y. Matsuura, T. Abel, and J.A. Harrington, �??Optical properties of small-bore hollow glass waveguides,�?? Appl. Opt. 34, 6842-6847 (1995).
    [CrossRef] [PubMed]

Appl. Opt. (3)

Chem. Mat. (1)

P. C Rieke and S.B. Bentjen, �??Deposition of cadmium sulfide films by decomposition of thiourea in basic solution,�?? Chem. Mat. 5, 43-53 (1993).
[CrossRef]

J. Lightwave Technol (1)

M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission,�?? J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

Mat. Chem. Phys. (1)

R. S Mane and C. D Lokhande, �??Chemical deposition method for metal chalcogenide thin films,�?? Mat. Chem. Phys. 65, 1-31 (2000).
[CrossRef]

Mater. Res. Bull. (1)

R. Dahan, J. Dror, and N. Croitoru, �??Characterization of chemically formed silver iodide layers for hollow infrared guides,�?? Mater. Res. Bull. 27, 761-766 (1992).
[CrossRef]

Opt. Eng. (2)

C. D. Rabii and J. A. Harrington, �??Measurement and control of thin film uniformity in hollow glass waveguides,�?? Opt. Eng. 38, 2009-2015 (1999).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, �??Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,�?? Opt. Eng. 35, 3418-3421 (1996).
[CrossRef]

Opt. Lett. (1)

Proc SPIE (1)

V. Gopal, and J.A. Harrington, �??Metal sulfide coatings for hollow glass waveguides,�?? in Optical Fibers and Sensors for Medical Applications III, Proc. SPIE 4957, 97-103 (2003)
[CrossRef]

Proc. SPIE (1)

V. Gopal, and J. A. Harrington, �??Dielectric coatings for Ag/dielectric hollow glass waveguides,�?? in Optical Fibers and Sensors for Medical Applications II, Proc. SPIE 4616, 143-151 (2002).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Solar Energy Materials and Solar Cells (1)

P. K. Nair, M. T. S Nair, V. M Garcia, O. L Arenas, Y Pena, A Castillo, I. T Ayala, O Gomezdaza, A Sanchez, J Compos, H Hu, R Suarez, and M. E. Rincon, �??Semiconductor thin films by chemical bath deposition for solar energy related applications,�?? Solar Energy Materials and Solar Cells 52, 313-344 (1998).
[CrossRef]

Other (3)

E.D. Palik and G. Ghosh, Handbook of optical constants of solids, (Academic, London, 1998).

Sopra database for n and k, <a href= "http://www.sopra-sa.com">http://www.sopra-sa.com (2003)

M. Ohring, The materials science of thin films, (Academic Press, Boston, 1992)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The growth kinetic curves of the CdS and PbS thin films deposited in a Ag coated, 1,000 µm bore HGWs. The color indicated is the color that one would see looking through the waveguides with an optical microscope.

Fig. 2.
Fig. 2.

UV-VIS spectra of 1,000-µm bore Ag/CdS HGWs for different deposition times in m minutes. The insert shows the color of the transmitted light as filtered by the coating.

Fig. 3.
Fig. 3.

FTIR spectra of 1,000-µm bore Ag/PbS HGWs for different deposition times in m minutes.

Fig. 4.
Fig. 4.

Cross sectional FESEM image of a 1,000-µm bore Ag/CdS /PbS HGW. The CdS and PbS thin films are deposited sequentially inside the Ag coated HGW.

Fig. 5.
Fig. 5.

FTIR Spectra of a 1,000-µm bore of 1, 2, and 3-layer dielectric coatings on Ag coated HGWs. The spectra beyond 4 to 12 µm region are essentially flat and featureless.

Tables (2)

Tables Icon

Table 1. Thickness values for CdS and PbS thin films on Ag determined from FESEM images

Tables Icon

Table 2. Loss values for 1,000-µm bore HGWs with 1, 2, and 3-layer dielectric coatings

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = m · λ p ( m ) 4 · n 1 2 1 ,

Metrics