Abstract

We demonstrate that chromatic dispersion induced pulse-width broadening can be effectively monitored by a simple average power measurement of the filtered output from a parametric amplifier when additional four-wave mixing interactions are introduced. This all-optical technique also provides all-optical frequency conversion of the signal being monitored and signal gain.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.J. Eggleton, et al, �??Integrated tunable fiber gratings for dispersion management in high-bit rate systems�?? J. Lightwave Technol. 18, 1418-1432 (2000).
    [CrossRef]
  2. P.S. Westbrook, B.J. Eggleton, G. Raybon, S. Hunsche and T.H. Her, �??Measurement of Residual Chromatic dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,�?? IEEE Photon. Tech. Lett. 14, 346-348 (2002)
    [CrossRef]
  3. H. Ohita, S. Nogiwa, Y. Kawaguchi and Y. Endo, �??Measurement of 200 Gbit/s optical eye diagram by optical sampling with gain-switched optical pulses,�?? Electron. Lett 36, 737 (2000)
    [CrossRef]
  4. Z. Pan et al., �??Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling,�?? in Optical Fiber Communication Conference, (Optical Society of America, Washington, DC, 2001), WH5.
  5. S. Wielandy et al., �??Real-time measurement of accumulated chromatic dispersion for automatic dispersion compensation,�?? Electon. Lett. 38, 1198-1199 (2002)
    [CrossRef]
  6. J. Blows, S. French, �??Low noise figure optical parametric amplifier with a continuous-wave frequency-modulated pump,�?? Opt. Lett. 27, 491-493 (2002)
    [CrossRef]
  7. R. McKerracher, J. Blows and M.C. deSterke, �??Wavelength conversion bandwidth in fibre based optical parametric amplifiers�?? Opt. Express 11, 1002-1007 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002</a>.
    [CrossRef] [PubMed]
  8. E. Ciaramella, F. Curti, and S. Trillo, �??All-optical reshaping by means of Four-Wave Mixing in Optical Fibers,�?? IEEE Phton. Technol. Lett. 13, 142-144 (2001)
    [CrossRef]
  9. K. Inoue, �??Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,�?? IEEE Photon. Technol. Lett. 13, 338-340 (2001)
    [CrossRef]
  10. J. Blows, �??Crosstalk in a fibre parametric wavelength converter,�?? Trends in Optics and Photonics. 86, Optical Fiber Communication Conference, (Optical Society of America, Washington, DC, 2003), pp 565
  11. J.H. Hansryd, P.A. Andrekson, �??Fiber-based optical parametric amplifiers and their applications,�?? IEEE J. Selec. Top. Quat. Electon. 8, 506-520 (2002)
    [CrossRef]
  12. K.K.Y. Wong, M.E. Marhic, K. Uesaka, L.G. Kazovsky, �??Polarization-independent two-pump fiber optical parametric amplifier,�?? IEEE Photon. Tech. Lett. 7, 911-913 (2002)
    [CrossRef]
  13. F. Forghieri, R.W. Tkach and A.R. Chraplyvy, �??Fiber nonlinearities and their impact on transmission systems,�?? in Optical Fiber Telecommunications IIIA, (1997) Academic Press (San Diego)
  14. G.P. Agrawal �??Wave propagation in Optical Fibers,�?? in Nonlinear Fiber Optics, (Academic Press, San Diego, 1995)
  15. J. Azana, M.A. Muriel, �??Technique for multiplying the repetition rate of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings, Opt. Lett. 24, 1672-1674 (1999)
    [CrossRef]
  16. S. Longhi et al., �??50-GHz pulse-train generation at 1.5 mm with a chirped fiber grating as a frequency multiplier,�?? Opt. Lett. 25, 1481-1483 (2000)
    [CrossRef]
  17. J. Azana, M.A. Muriel, Temportal self-imaging effects: Theory and Application for multiplying pulse repetition rates,�?? IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001)
    [CrossRef]

Electon. Lett. (1)

S. Wielandy et al., �??Real-time measurement of accumulated chromatic dispersion for automatic dispersion compensation,�?? Electon. Lett. 38, 1198-1199 (2002)
[CrossRef]

Electron. Lett. (1)

H. Ohita, S. Nogiwa, Y. Kawaguchi and Y. Endo, �??Measurement of 200 Gbit/s optical eye diagram by optical sampling with gain-switched optical pulses,�?? Electron. Lett 36, 737 (2000)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azana, M.A. Muriel, Temportal self-imaging effects: Theory and Application for multiplying pulse repetition rates,�?? IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001)
[CrossRef]

IEEE J. Selec. Top. Quat. Electon. (1)

J.H. Hansryd, P.A. Andrekson, �??Fiber-based optical parametric amplifiers and their applications,�?? IEEE J. Selec. Top. Quat. Electon. 8, 506-520 (2002)
[CrossRef]

IEEE Photon. Tech. Lett. (2)

K.K.Y. Wong, M.E. Marhic, K. Uesaka, L.G. Kazovsky, �??Polarization-independent two-pump fiber optical parametric amplifier,�?? IEEE Photon. Tech. Lett. 7, 911-913 (2002)
[CrossRef]

P.S. Westbrook, B.J. Eggleton, G. Raybon, S. Hunsche and T.H. Her, �??Measurement of Residual Chromatic dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,�?? IEEE Photon. Tech. Lett. 14, 346-348 (2002)
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Inoue, �??Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,�?? IEEE Photon. Technol. Lett. 13, 338-340 (2001)
[CrossRef]

IEEE Phton. Technol. Lett. (1)

E. Ciaramella, F. Curti, and S. Trillo, �??All-optical reshaping by means of Four-Wave Mixing in Optical Fibers,�?? IEEE Phton. Technol. Lett. 13, 142-144 (2001)
[CrossRef]

J. Lightwave Technol. (1)

Nonlinear Fiber Optics (1)

G.P. Agrawal �??Wave propagation in Optical Fibers,�?? in Nonlinear Fiber Optics, (Academic Press, San Diego, 1995)

OFC 2001 (1)

Z. Pan et al., �??Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling,�?? in Optical Fiber Communication Conference, (Optical Society of America, Washington, DC, 2001), WH5.

OFC 2003 (1)

J. Blows, �??Crosstalk in a fibre parametric wavelength converter,�?? Trends in Optics and Photonics. 86, Optical Fiber Communication Conference, (Optical Society of America, Washington, DC, 2003), pp 565

Opt. Express (1)

Opt. Lett. (3)

Optical Fiber Telecommunications IIIA (1)

F. Forghieri, R.W. Tkach and A.R. Chraplyvy, �??Fiber nonlinearities and their impact on transmission systems,�?? in Optical Fiber Telecommunications IIIA, (1997) Academic Press (San Diego)

Supplementary Material (1)

» Media 1: MPG (1033 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Top) The signal undergoes dispersion compensation and then amplification and simultaneous frequency conversion. A simple average power measurement of a new monitor frequency is used to minimize the residual dispersion. (Bottom) The optical spectrum of points (I) through (IV). The peaks are signal (s), pump (p), idler (i) and monitor (m)

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. PC-Polarization controller, FBG-Fiber Bragg grating and circulator based filter, MFL-Modelocked fiber laser, TDC-Tuneable dispersion compensator, VA-Variable attenuator, Attn-Attenuator, TBF-Tuneable bandpass filter, PM-Power meter, OSA-Optical Spectrum Analyzer.

Fig. 3.
Fig. 3.

(Left) The output from the device measured on the optical spectrum analyzer. (Right) The measured gain spectrum.

Fig. 4.
Fig. 4.

(Left) The measured power transfer function between points A and B in Fig. 2 and (Right) the measured power and predicted power in peak (e) as a function of dispersion.

Fig. 5.
Fig. 5.

(1.1 MB) Animation showing the evolution of the pulse train at ‘A’ and the corresponding spectral and power measurements.

Metrics