Abstract

We interfaced color Doppler Fourier domain optical coherence tomography (CD-FDOCT) with a commercial OCT system to perform in vivo studies of human retinal blood flow in real time. FDOCT does not need reference arm scanning and records one full depth and Doppler profile in parallel. The system operates with an equivalent A-scan rate of 25 kHz and allows real time imaging of the color encoded Doppler information together with the tissue morphology at a rate of 2–4 tomograms (40×512 pixel) per second. The recording time of a single tomogram (160×512 data points) is only 6,4ms. Despite the high detection speed we achieve a system sensitivity of 86dB using a beam power of 500µW at the cornea. The fundus camera allows simultaneous view for selection of the region of interest. We observe bi-directional blood flow and pulsatility of blood velocity in retinal vessels with a Doppler detection bandwidth of 12.5 kHz and a longitudinal velocity sensitivity in tissue of 200µm/s.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Flammer, S. Orgul; V.P. Costa, N. Orzalesi, G.K. Krieglstein, L.M. Serra, J.P.Renard, E. Stefansson, "The impact of ocular blood flow in glaucoma,�?? Prog. Retin. Eye Res. 21, 359-93 (2002).
    [CrossRef] [PubMed]
  2. L. Schmetterer, M. Wolzt, �??Ocular blood flow and associated functional deviations in diabetic retinopathy,�?? Diabetologia, 42, 387-405 (1999).
    [CrossRef]
  3. E. Friedman, �??A hemodynamic model of the pathogenesis of age-related macular degeneration,�?? Am. J. Ophthalmol. 124, 677-82 (1997).
    [PubMed]
  4. C.E. Riva, S.D. Cranstoun, J.E. Grunwald, B.L. Petrig, "Choroidal blood flow in the foveal region of the human disc,�?? Invest. Ophthalmol. Vis. Sci. 35, 4273-81 (1994).
    [PubMed]
  5. C.E. Riva, J.E. Grunwald, S.H. Sinclair, B.L. Petrig, �??Blood velocity and volumetric flow rate in human retinal vessels,�?? Invest. Ophthalmol. Vis. Sci. 26, 1124-32 (1985).
    [PubMed]
  6. E.Logean, L. Schmetterer, C. E. Riva, �??Optical Doppler velocimetry at various retinal vessel depths by variation of the source coherence length,�?? Appl. Opt. 39, 2858-2862 (2000).
    [CrossRef]
  7. S.Yazdanfar, A. M. Rollins, J. A. Izatt, �??In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,�?? Arch. Ophthalmol. 121, 235-239 (2003).
    [CrossRef] [PubMed]
  8. Y.Zhao, Z.Chen, C.Saxer, S.Xiang, J de Boer, J Nelson, �??Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,�?? Opt. Lett. 25, 1358-1360 (2000).
    [CrossRef]
  9. Z.Chen, T. E. Milner, S. Srinivas, X.Wang, A.Malekafzali, M.van Gemert, J. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
    [CrossRef] [PubMed]
  10. V.X.D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, �??High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,�?? Opt. Express 11, 1650-1658 (2003); <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794</a>.
    [CrossRef] [PubMed]
  11. R. Leitgeb, L. Schmetterer, F. Berisha, C. K. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, �??Real- time measurements of in-vitro flow by Fourier domain optical coherence tomography,�?? accepted for publication in Optics Letters.
  12. M.Wojtkowski, T. Bajraszewski, P.Targowski,A.Kowalczyk, �??Real-time in-vivo ophthalmic imaging by ultra fast spectral optical coherence tomography,�?? SPIE Proc. 4956, 50-58 (2003).
    [CrossRef]
  13. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889".>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  14. A. F. Fercher, C. K. Hitzenberger, G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  15. C.E. Riva , G.T. Feke, B. Eberli, V. Benary, �??Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,�?? Appl. Opt. 18, 2301-2306 (1979).
    [CrossRef] [PubMed]
  16. American National Standards Institute; Safe Use of Lasers; Orlando, Laser Institute of America, ANSI 136.1 �?? 2000 (2000).

Am. J. Ophthalmol. (1)

E. Friedman, �??A hemodynamic model of the pathogenesis of age-related macular degeneration,�?? Am. J. Ophthalmol. 124, 677-82 (1997).
[PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

S.Yazdanfar, A. M. Rollins, J. A. Izatt, �??In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,�?? Arch. Ophthalmol. 121, 235-239 (2003).
[CrossRef] [PubMed]

Diabetologia (1)

L. Schmetterer, M. Wolzt, �??Ocular blood flow and associated functional deviations in diabetic retinopathy,�?? Diabetologia, 42, 387-405 (1999).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (2)

C.E. Riva, S.D. Cranstoun, J.E. Grunwald, B.L. Petrig, "Choroidal blood flow in the foveal region of the human disc,�?? Invest. Ophthalmol. Vis. Sci. 35, 4273-81 (1994).
[PubMed]

C.E. Riva, J.E. Grunwald, S.H. Sinclair, B.L. Petrig, �??Blood velocity and volumetric flow rate in human retinal vessels,�?? Invest. Ophthalmol. Vis. Sci. 26, 1124-32 (1985).
[PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optics Letters (1)

R. Leitgeb, L. Schmetterer, F. Berisha, C. K. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, �??Real- time measurements of in-vitro flow by Fourier domain optical coherence tomography,�?? accepted for publication in Optics Letters.

Prog. Retin. Eye Res. (1)

J. Flammer, S. Orgul; V.P. Costa, N. Orzalesi, G.K. Krieglstein, L.M. Serra, J.P.Renard, E. Stefansson, "The impact of ocular blood flow in glaucoma,�?? Prog. Retin. Eye Res. 21, 359-93 (2002).
[CrossRef] [PubMed]

SPIE Proc. (1)

M.Wojtkowski, T. Bajraszewski, P.Targowski,A.Kowalczyk, �??Real-time in-vivo ophthalmic imaging by ultra fast spectral optical coherence tomography,�?? SPIE Proc. 4956, 50-58 (2003).
[CrossRef]

Other (1)

American National Standards Institute; Safe Use of Lasers; Orlando, Laser Institute of America, ANSI 136.1 �?? 2000 (2000).

Supplementary Material (2)

» Media 1: AVI (1115 KB)     
» Media 2: AVI (1239 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

CD-FDOCT setup and control scheme: SLD…superluminescence diode, Ch…Chopper, DF…neutral density filter, XY-Sc…galvo scanner, BE…beam expander, DG…diffraction grating, CCD…charge coupled device, DM…dichroic mirror, FC…fundus camera, S…sample, SYNC…synchronization module, PC…personal computer.

Fig. 2.
Fig. 2.

(a) fundus camera image of right eye with indicated scanning position. (b) Cross section taken along the line in (a) (NFL- nerve fiber layer,GCL- ganglion cell layer, IPL/OPL-inner/outer plexiform layer, INL/ONL-inner/outer nuclear layer, ISPR/OSPR-inner/outer segment photoreceptor layer, RPE- retinal pigment epithelium, CC- Choriocapillaris,); red and blue box: regions of interest for the CD FDOCT measurements.

Fig. 3.
Fig. 3.

(a) CD FDOCT tomogram of the selected region in Fig.2 (red, lateral width ~ 450µm). (b) corresponding intensity tomogram. (c) Extracted flow profiles at the two vessels with parabolic curve fit (red and blue lines for left and right vessel in (a) respectively). Shown is the longitudinal velocity component. The blue profile is shifted in depth as compared to the red profile due to the different depth locations of the vessels.

Fig. 4.
Fig. 4.

(a) CD FDOCT tomogram of the selected region in Fig. 2 (blue, lateral width ~350µm). (b) Corresponding intensity tomogram. (c) Extracted flow profiles at systolic (blue line) and diastolic (red line) part of the heart cycle. Shown is the longitudinal velocity component.

Fig. 5.
Fig. 5.

(a): Movie for Fig. 3 (1.2 MB). (b) Movie for Fig. 4 (1.08MB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v ( z ) = λ 4 π τ n ( N 1 ) n = 0 N 2 ( Φ n + 1 ( z ) Φ n ( z ) ) ,

Metrics