Abstract

Morphological changes and complex developmental processes inside vertebrate embryos are difficult to observe noninvasively with millimeter-penetration and sub-micrometer-resolution at the same time. By using higher harmonic generation, including second and third harmonics, as the microscopic contrast mechanism, optical noninvasiveness can be achieved due to the virtual-level-transition characteristic. The intrinsic nonlinearity of harmonic generations provides optical sectioning capability while the selected 1230-nm near-infrared light source provides the deeppenetration ability. The complicated development within a ~1.5-mm thick zebrafish (Danio rerio) embryo from initial cell proliferation, gastrulation, to tissue formation can all be observed clearly in vivo without any treatment on the live specimen.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, �??Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,�?? Proc. Natl. Acad. Sci. 96, 6700-6704 (1999).
  2. S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, �??Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,�?? J. Microscopy 208, 190-200 (2002).
  3. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, �??Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,�?? Biophys. J. 82, 493-508 (2002).
  4. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, �??3D microscopy of transparent objects using third-harmonic generation,�?? J. Microsc. 191, 266-274 (1998).
    [CrossRef]
  5. D. Yelin and Y. Silberberg, �??Laser scanning third-harmonic-generation microscopy in biology,�?? Opt. Express 5, 169-175 (1999) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-8-169">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-8-169</a>
  6. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin, �??Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope,�?? Opt. Lett. 26, 515-517 (2001).
  7. A. Y. Louie, M. M. Hüber, E. T. Ahrens, U. Rothbächer, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade, �??In vivo visualization of gene expression using magnetic resonance imaging,�?? Nat. Biotech. 18, 321-325 (2000).
    [CrossRef]
  8. F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D.A. Christopher, and D. H. Turnbull, �??Advances in ultrasound biomicroscopy,�?? Ultrasound in Med. Biol. 26, 1�??27 (2000).
  9. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, �??Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,�?? Proc. Natl. Acad. Sci. 94, 4256�??4261 (1997).
  10. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, �??Optical coherence tomography: A new high-resolution imaging technology to study cardiac development in chick embryos,�?? Circulation 106, 2771-2774 (2002).
    [CrossRef]
  11. C. Palmes-Saloma and C. Saloma, �??Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH,�?? J. Struct. Bio. 131, 56�??66 (2000).
  12. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, �??Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,�?? Nat. Biotech. 17, 763-767 (1999).
    [CrossRef]
  13. C. L. Phillips, L. J. Arend, A. J. Filson, D. J. Kojetin, J. L. Clendenon, S. Fang, and K. W. Dunn, �??Three dimensional imaging of embryonic mouse kidney by two-photon microscopy,�?? Am. J. Pathol. 158, 49-55 (2001).
  14. R. R. Anderson and J. A. Parish, �??The optics of human skin,�?? J. Invest. Dermat. 77, 13-19 (1981).
    [CrossRef]
  15. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, �??Self-phase-modulated Kerrlens mode-locked Cr:forsterite laser source for optical coherence tomography,�?? Opt. Lett. 21, 1839 (1996).
  16. S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Cheng, C.-K. Sun, and B.-L. Lin, �??Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,�?? Opt. Lett. 26, 1909-1911 (2001).
  17. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, �??Multi-photon scanning microscopy using a femtosecond Cr:forsterite laser,�?? Scanning 23, 249-254 (2001).
  18. A. Seas, V. Petri�?evi�?, and R.R. Alfano, �??Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser,�?? Opt. Lett. 17, 937-939 (1992).
  19. C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, �??Stages of embryonic development of the zebrafish,�?? Dev. Dynam. 203, 253-310 (1995).
  20. J. M. Schins, T. Schrama, J. Squier, G. J. Brakenhoff, and M. Müller, �??Determination of material properties by use of third-harmonic generation microscopy,�?? J. Opt. Soc. Am. B 19, 1627-1634 (2002).
  21. K. König, P.T.C. So, W.W. Mantulin, and E. Gratton, �??Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,�?? Opt. Lett. 22, 135-136 (1997).
  22. A. Schönle and S. W. Hell, �??Heating by absorption in the focus of an objective lens,�?? Opt. Lett. 23, 325-327 (1998)
  23. I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, �??Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,�?? Opt. Quantum. Electron 34, 1251-1266 (2002).
    [CrossRef]
  24. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, �??Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,�?? Optics Express 11, 933-938 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933</a>

Am. J. Pathol.

C. L. Phillips, L. J. Arend, A. J. Filson, D. J. Kojetin, J. L. Clendenon, S. Fang, and K. W. Dunn, �??Three dimensional imaging of embryonic mouse kidney by two-photon microscopy,�?? Am. J. Pathol. 158, 49-55 (2001).

Biophys. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, �??Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,�?? Biophys. J. 82, 493-508 (2002).

Circulation

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, �??Optical coherence tomography: A new high-resolution imaging technology to study cardiac development in chick embryos,�?? Circulation 106, 2771-2774 (2002).
[CrossRef]

Dev. Dynam.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, �??Stages of embryonic development of the zebrafish,�?? Dev. Dynam. 203, 253-310 (1995).

J. Invest. Dermat.

R. R. Anderson and J. A. Parish, �??The optics of human skin,�?? J. Invest. Dermat. 77, 13-19 (1981).
[CrossRef]

J. Microsc.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, �??3D microscopy of transparent objects using third-harmonic generation,�?? J. Microsc. 191, 266-274 (1998).
[CrossRef]

J. Microscopy

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, �??Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,�?? J. Microscopy 208, 190-200 (2002).

J. Opt. Soc. Am. B

J. Struct. Bio.

C. Palmes-Saloma and C. Saloma, �??Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH,�?? J. Struct. Bio. 131, 56�??66 (2000).

Nat. Biotech.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, �??Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,�?? Nat. Biotech. 17, 763-767 (1999).
[CrossRef]

A. Y. Louie, M. M. Hüber, E. T. Ahrens, U. Rothbächer, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade, �??In vivo visualization of gene expression using magnetic resonance imaging,�?? Nat. Biotech. 18, 321-325 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum. Electron

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, �??Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,�?? Opt. Quantum. Electron 34, 1251-1266 (2002).
[CrossRef]

Optics Express

S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, �??Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,�?? Optics Express 11, 933-938 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933</a>

Proc. Natl. Acad. Sci.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, �??Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,�?? Proc. Natl. Acad. Sci. 94, 4256�??4261 (1997).

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, �??Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,�?? Proc. Natl. Acad. Sci. 96, 6700-6704 (1999).

Scanning

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, �??Multi-photon scanning microscopy using a femtosecond Cr:forsterite laser,�?? Scanning 23, 249-254 (2001).

Ultrasound in Med. Biol.

F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D.A. Christopher, and D. H. Turnbull, �??Advances in ultrasound biomicroscopy,�?? Ultrasound in Med. Biol. 26, 1�??27 (2000).

Supplementary Material (4)

» Media 1: MOV (730 KB)     
» Media 2: MOV (434 KB)     
» Media 3: MOV (738 KB)     
» Media 4: MOV (280 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics