Abstract

This paper describes thermal poling of a silica based channel waveguide Mach-Zehnder interferometer, and direct measurent of the dc-Kerr and induced electro-optic coefficients. A χ(3) of 5.2 (±0.4)×10-22 (m/V)2 was measured for the un-poled waveguide, and r-coefficient of approximately 0.07 pm/V was induced by poling. χ(3) increased by a factor of 1.9 after poling. It is shown that the dc-Kerr effect plays an important role in the poled device.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time evolution of frozen-in field during poling of fiber with alloy electrodes

Niklas Myrén and Walter Margulis
Opt. Express 13(9) 3438-3444 (2005)

Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes

W. Margulis, O. Tarasenko, and N. Myrén
Opt. Express 17(18) 15534-15540 (2009)

Study of thermally poled fibers with a two-dimensional model

Alexandre Camara, Oleksandr Tarasenko, and Walter Margulis
Opt. Express 22(15) 17700-17715 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732 (1991).
    [Crossref] [PubMed]
  2. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic effect in silica amorphous silica,” Opt. Lett. 19, 1819 (1994).
    [Crossref] [PubMed]
  3. P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
    [Crossref]
  4. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” Opt. Lett. 19, 466 (1994).
    [Crossref] [PubMed]
  5. M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).
  6. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162 (1994).
    [Crossref]
  7. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
    [Crossref]
  8. D. E. Carlson, “Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,” J. Am. Cer. Soc. 57, 291 (1974).
    [Crossref]
  9. P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611, (1994).
    [Crossref]
  10. T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
    [Crossref]
  11. N. Godbut, S. Lacroix, Y. Quiquempois, G. Martinelli, and P. Bernage, “Measurement and calculation of electrostrictive effects in a twin-hole silica glass fiber,” J. Opt. Soc. Am. B 17, 1–5 (2000).
    [Crossref]
  12. M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
    [Crossref]
  13. Raman Kashyap, in Fiber Bragg Grating, edited by P.L. Kelly, J. Kaminow, and G. P. Agrawal (Academic Press, London, 1999), 15.
  14. W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).
  15. R. Kashyap, “Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,” J. Opt. Soc. of Am. B 6, 313 (1989).
    [Crossref]
  16. F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
    [Crossref]
  17. A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
    [Crossref]
  18. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
    [Crossref]
  19. J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.
  20. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
    [Crossref]
  21. W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
    [Crossref]
  22. R. Kashyap, “Why the χ(3) of silica increases after poling,” Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.
  23. R. Kashyap, F. C. Garcia, and L. Vogelaar, “Nonlinearity of the electro-optic effect in poled waveguide,s”, ibid. pp. Paper TuC2, pp. 210–212.

2000 (4)

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

N. Godbut, S. Lacroix, Y. Quiquempois, G. Martinelli, and P. Bernage, “Measurement and calculation of electrostrictive effects in a twin-hole silica glass fiber,” J. Opt. Soc. Am. B 17, 1–5 (2000).
[Crossref]

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

1999 (3)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
[Crossref]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
[Crossref]

1998 (2)

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

1997 (1)

P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
[Crossref]

1996 (1)

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

1994 (4)

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” Opt. Lett. 19, 466 (1994).
[Crossref] [PubMed]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic effect in silica amorphous silica,” Opt. Lett. 19, 1819 (1994).
[Crossref] [PubMed]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162 (1994).
[Crossref]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611, (1994).
[Crossref]

1991 (1)

1989 (1)

R. Kashyap, “Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,” J. Opt. Soc. of Am. B 6, 313 (1989).
[Crossref]

1988 (1)

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

1974 (1)

D. E. Carlson, “Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,” J. Am. Cer. Soc. 57, 291 (1974).
[Crossref]

Abe, M.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
[Crossref]

Arentoft, J.

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Balestrieri, V.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

Bazylenko, M.

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Bernage, P.

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
[Crossref]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162 (1994).
[Crossref]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic effect in silica amorphous silica,” Opt. Lett. 19, 1819 (1994).
[Crossref] [PubMed]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732 (1991).
[Crossref] [PubMed]

Carlson, D. E.

D. E. Carlson, “Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,” J. Am. Cer. Soc. 57, 291 (1974).
[Crossref]

Carvalho, I. C. S.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

Cordeiro, C. M. B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

Digonnet, M. J. F.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” Opt. Lett. 19, 466 (1994).
[Crossref] [PubMed]

Farries, M. C.

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

Farries, M. E.

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

Fermann, M. E.

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

Fleming, S.

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
[Crossref]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

Fujiwara, T.

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

Garcia, F. C.

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

R. Kashyap, F. C. Garcia, and L. Vogelaar, “Nonlinearity of the electro-optic effect in poled waveguide,s”, ibid. pp. Paper TuC2, pp. 210–212.

Godbut, N.

Hattori, K.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

Hering, E. N.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

Himeno, A.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

Hubner, J.

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Ikushima, A. J.

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

Kashyap, R.

R. Kashyap, “Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,” J. Opt. Soc. of Am. B 6, 313 (1989).
[Crossref]

R. Kashyap, “Why the χ(3) of silica increases after poling,” Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.

R. Kashyap, F. C. Garcia, and L. Vogelaar, “Nonlinearity of the electro-optic effect in poled waveguide,s”, ibid. pp. Paper TuC2, pp. 210–212.

Kashyap, Raman

Raman Kashyap, in Fiber Bragg Grating, edited by P.L. Kelly, J. Kaminow, and G. P. Agrawal (Academic Press, London, 1999), 15.

Kazansky, P. G.

P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
[Crossref]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611, (1994).
[Crossref]

Kino, G. S.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” Opt. Lett. 19, 466 (1994).
[Crossref] [PubMed]

Kitagawa, T.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

Knystautas, E. J.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

Kristensen, M.

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Lacroix, S.

Laurell, F.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

Lesche, B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

Li, L.

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

Liu, A. C.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” Opt. Lett. 19, 466 (1994).
[Crossref] [PubMed]

Lo, K. M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

Long, X. C.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic effect in silica amorphous silica,” Opt. Lett. 19, 1819 (1994).
[Crossref] [PubMed]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162 (1994).
[Crossref]

Margulis, W.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

Martinelli, G.

Matsumoto, S.

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

Mukherjee, N.

Myers, R. A.

Ohama, M.

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

Ohmori, Y.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

Payne, D. N.

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

Quiquempois, Y.

Russell, P. St. J.

P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
[Crossref]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611, (1994).
[Crossref]

Takebe, H.

P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
[Crossref]

Triques, A. L. C.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

Valente, L. C. G.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

Vogelaar, L.

R. Kashyap, F. C. Garcia, and L. Vogelaar, “Nonlinearity of the electro-optic effect in poled waveguide,s”, ibid. pp. Paper TuC2, pp. 210–212.

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
[Crossref]

Wong, D.

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
[Crossref]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
[Crossref]

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Appl. Phys. Lett. (2)

F. C. Garcia, E. N. Hering, I. C. S. Carvalho, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252, (1998).
[Crossref]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496, (2000).
[Crossref]

Bull. Mat. Res. (1)

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” Bull. Mat. Res. 23, 31, (1998).

Electron. Lett. (5)

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555, (2000).
[Crossref]

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32, 893, (1996).
[Crossref]

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres,” Electron. Lett. 24, 895 (1988).

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162 (1994).
[Crossref]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35, 922 (1999).
[Crossref]

J. Am. Cer. Soc. (1)

D. E. Carlson, “Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,” J. Am. Cer. Soc. 57, 291 (1974).
[Crossref]

J. Lightwave Technol. (1)

P. G. Kazansky, P. St. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484 (1997).
[Crossref]

J. Non-Crystal. Sol. (1)

T. Fujiwara, S. Matsumoto, M. Ohama, and A. J. Ikushima, “Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass,” J. Non-Crystal. Sol. 273, 203 (2000).
[Crossref]

J. of Appl. Phys. (1)

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. of Appl. Phys. 86, 6634, (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. of Am. B (1)

R. Kashyap, “Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,” J. Opt. Soc. of Am. B 6, 313 (1989).
[Crossref]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611, (1994).
[Crossref]

Opt. Fib. Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibres,” Opt. Fib. Technol. 5, 235, (1999).
[Crossref]

Opt. Lett. (3)

Other (4)

Raman Kashyap, in Fiber Bragg Grating, edited by P.L. Kelly, J. Kaminow, and G. P. Agrawal (Academic Press, London, 1999), 15.

R. Kashyap, “Why the χ(3) of silica increases after poling,” Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.

R. Kashyap, F. C. Garcia, and L. Vogelaar, “Nonlinearity of the electro-optic effect in poled waveguide,s”, ibid. pp. Paper TuC2, pp. 210–212.

J. Arentoft, M. Kristensen, J. Hubner, W. Xu, and M. Bazylenko “Poling of UV written waveguides,” in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Arrangement to measure the dc-Kerr and Electro-Optic effects. The gold electrode is shown in yellow and only covers the coiled region.

Fig. 2.
Fig. 2.

Output from ports 3 (open squares) and 4 (open circles) and their theoretical fits (lines).

Fig. 3.
Fig. 3.

(a) Output power at port 3 when an external field Eappl is applied in the waveguide. (b) The phase change due to Eappl. The open squares represent a quadrature point with the wavelength going “down”, while the open circles represent one going “up”. The dotted and solid lines are the parabolic fits to the curves going “up” and “down”, respectively.

Fig. 4.
Fig. 4.

(a) Average ηEdc vs. Epoling. (b) Average increase of χ(3) as a function of Epoling.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δn = 1 2 n 0 χ ( 3 ) ( E dc + E appl ) 2 = 1 2 n 0 χ ( 3 ) ( E dc 2 + 2 E dc E appl + E appl 2 )
P 3 P 2 = sin 2 ( κ 1 L 1 ) cos 2 ( κ 2 L 2 ) exp ( 2 α L A ) + cos 2 ( κ 1 L 1 ) sin 2 ( κ 2 L 2 ) exp ( 2 α L B )
+ 2 sin ( κ 1 L 1 ) sin ( κ 21 L 2 ) cos ( κ 1 L 1 ) cos ( κ 2 L 2 ) cos Δϕ exp [ α ( L A + L B ) ] ,
P 4 P 2 = sin 2 ( κ 1 L 1 ) sin 2 ( κ 2 L 2 ) exp ( 2 α L A ) + cos 2 ( κ 1 L 1 ) cos 2 ( κ 2 L 2 ) exp ( 2 α L B )
2 sin ( κ 1 L 1 ) sin ( κ 21 L 2 ) cos ( κ 1 L 1 ) cos ( κ 2 L 2 ) cos Δϕ exp [ α ( L A + L B ) ] ,
Δϕ = 2 π λ n ( L A L B ) .
ϕ A = π L A χ ( 3 ) λn ( E dc + E appl ) 2 = ϕ o + π L A χ ( 3 ) λn ( 2 E dc E appl + E appl 2 ) .
χ ind ( 2 ) = 3 2 χ ( 3 ) E dc ,
r = 2 χ ind ( 2 ) n 4 .

Metrics