Abstract

This paper describes thermal poling of a silica based channel waveguide Mach-Zehnder interferometer, and direct measurent of the dc-Kerr and induced electro-optic coefficients. A χ(3) of 5.2 (±0.4)×10-22 (m/V)2 was measured for the un-poled waveguide, and r-coefficient of approximately 0.07 pm/V was induced by poling. χ(3) increased by a factor of 1.9 after poling. It is shown that the dc-Kerr effect plays an important role in the poled device.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Myers, N. Mukherjee and S. R. J. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett.16, 1732 (1991).
    [CrossRef] [PubMed]
  2. X. C. Long, R. A. Myers and S. R. J. Brueck, �??Measurement of the linear electro-optic effect in silica amorphoussilica,�?? Opt. Lett. 19, 1819 (1994).
    [CrossRef] [PubMed]
  3. P. G. Kazansky, P. St. J. Russell and H. Takebe, �??Glass fiber poling and applications,�?? J. Lightwave Technol. 15, 1484 (1997).
    [CrossRef]
  4. A. C. Liu, M. J. F. Digonnet and G. S. Kino, �??Electro-optic phase modulation in silica channel waveguide,�?? Opt. Lett. 19, 466 (1994).
    [CrossRef] [PubMed]
  5. M. E. Farries, M. E. Fermann, L. Li, M. C. Farries and D. N. Payne, �??Frequency-doubling by modal phase matching in poled optical fibres,�?? Electron. Lett. 24, 895 (1988).
  6. X. C. Long, R. A. Myers and S. R. J. Brueck, �??Measurement of linear electro-optic effect in temperature/electric- field poled optical fibres,�?? Electron. Lett. 30, 2162 (1994).
    [CrossRef]
  7. T. G. Alley, S. R. J. Brueck and M. Wiedenbeck, �??Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,�?? J. of Appl. Phys. 86, 6634, (1999).
    [CrossRef]
  8. D. E. Carlson, �??Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,�?? J. Am. Cer. Soc. 57, 291 (1974).
    [CrossRef]
  9. P. G. Kazansky and P. St. J. Russell, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611, (1994).
    [CrossRef]
  10. T. Fujiwara, S. Matsumoto, M. Ohama and A. J. Ikushima, �??Origin and properties of second-order optical non- linearity in ultraviolet-poled GeO2�??SiO2 glass,�?? J. Non-Crystal. Sol. 273, 203 (2000).
    [CrossRef]
  11. N. Godbut, S. Lacroix, Y. Quiquempois, G. Martinelli P. Bernage, �??Measurement and calculation of electrostrictive effects in a twin-hole silica glass fiber,�?? J. Opt. Soc. Am. B 17, 1-5 (2000).
    [CrossRef]
  12. M. Abe, T. Kitagawa, K. Hattori, A. Himeno and Y. Ohmori, �??Electro-optic switch constructed with a poled silica- based waveguide on a Si substrate,�?? Electron. Lett. 32, 893, (1996).
    [CrossRef]
  13. Raman Kashyap, in Fiber Bragg Grating, edited by P.L.Kelly, J.Kaminow, G. P. Agrawal (Academic Press, London, 1999), 15
  14. W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B .Lesche, F. Laurell and I. C. S. Carvalho, �??Poled glasses,�?? Bull. Mat. Res. 23, 31, (1998).
  15. R. Kashyap, �??Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,�?? J. Opt. Soc. of Am. B 6, 313 (1989).
    [CrossRef]
  16. F. C. Garcia, E. N. Hering, I. C. S. Carvalho and W. Margulis, �??Inducing a large second-order optical nonlinearity in soft glasses by poling,�?? Appl. Phys. Lett. 72, 3252, (1998).
    [CrossRef]
  17. A. C. Liu, M. J. F. Digonnet, G. S. Kino and E. J. Knystautas, �??Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,�?? Electron. Lett. 36, 555, (2000).
    [CrossRef]
  18. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis and I. C. S. Carvalho, �??Depletion region in thermally poled fused silica,�?? Appl. Phys. Lett. 76, 2496, (2000).
    [CrossRef]
  19. J. Arentoft, M. Kristensen, J. Hubner, W. Xu and M. Bazylenko �??Poling of UV written waveguides,�?? in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.
  20. D. Wong, W. Xu, S. Fleming, M. Janos and K. M. Lo, �??Frozen-in electrical field in thermally poled fibres,�?? Opt. Fib. Technol. 5, 235, (1999).
    [CrossRef]
  21. W. Xu, D. Wong and S. Fleming, �??Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,�?? Electron. Lett. 35, 922 (1999).
    [CrossRef]
  22. R. Kashyap, �??Why the ÷(3) of silica increases after poling,�?? Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.
  23. R. Kashyap, F. C. Garcia and L. Vogelaar, �??Nonlinearity of the electro-optic effect in poled waveguide,s, ibid. pp. Paper TuC2, pp. 210-212

Appl. Phys. Lett. (2)

F. C. Garcia, E. N. Hering, I. C. S. Carvalho and W. Margulis, �??Inducing a large second-order optical nonlinearity in soft glasses by poling,�?? Appl. Phys. Lett. 72, 3252, (1998).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis and I. C. S. Carvalho, �??Depletion region in thermally poled fused silica,�?? Appl. Phys. Lett. 76, 2496, (2000).
[CrossRef]

Bull. Mat. Res. (1)

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B .Lesche, F. Laurell and I. C. S. Carvalho, �??Poled glasses,�?? Bull. Mat. Res. 23, 31, (1998).

Electron. Lett. (5)

A. C. Liu, M. J. F. Digonnet, G. S. Kino and E. J. Knystautas, �??Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,�?? Electron. Lett. 36, 555, (2000).
[CrossRef]

M. Abe, T. Kitagawa, K. Hattori, A. Himeno and Y. Ohmori, �??Electro-optic switch constructed with a poled silica- based waveguide on a Si substrate,�?? Electron. Lett. 32, 893, (1996).
[CrossRef]

M. E. Farries, M. E. Fermann, L. Li, M. C. Farries and D. N. Payne, �??Frequency-doubling by modal phase matching in poled optical fibres,�?? Electron. Lett. 24, 895 (1988).

X. C. Long, R. A. Myers and S. R. J. Brueck, �??Measurement of linear electro-optic effect in temperature/electric- field poled optical fibres,�?? Electron. Lett. 30, 2162 (1994).
[CrossRef]

W. Xu, D. Wong and S. Fleming, �??Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,�?? Electron. Lett. 35, 922 (1999).
[CrossRef]

J. Am. Cer. Soc. (1)

D. E. Carlson, �??Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,�?? J. Am. Cer. Soc. 57, 291 (1974).
[CrossRef]

J. Lightwave Technol (1)

P. G. Kazansky, P. St. J. Russell and H. Takebe, �??Glass fiber poling and applications,�?? J. Lightwave Technol. 15, 1484 (1997).
[CrossRef]

J. Non-Crystal. Sol. (1)

T. Fujiwara, S. Matsumoto, M. Ohama and A. J. Ikushima, �??Origin and properties of second-order optical non- linearity in ultraviolet-poled GeO2�??SiO2 glass,�?? J. Non-Crystal. Sol. 273, 203 (2000).
[CrossRef]

J. of Appl. Phys. (1)

T. G. Alley, S. R. J. Brueck and M. Wiedenbeck, �??Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,�?? J. of Appl. Phys. 86, 6634, (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. of Am. B (1)

R. Kashyap, �??Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,�?? J. Opt. Soc. of Am. B 6, 313 (1989).
[CrossRef]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russell, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611, (1994).
[CrossRef]

Opt. Fib. Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos and K. M. Lo, �??Frozen-in electrical field in thermally poled fibres,�?? Opt. Fib. Technol. 5, 235, (1999).
[CrossRef]

Opt. Lett. (3)

Paper TuC2 (1)

R. Kashyap, F. C. Garcia and L. Vogelaar, �??Nonlinearity of the electro-optic effect in poled waveguide,s, ibid. pp. Paper TuC2, pp. 210-212

Technical Digest of Bragg Gratings (1)

R. Kashyap, �??Why the ÷(3) of silica increases after poling,�?? Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.

technical Digest of OFC, 1999 (1)

J. Arentoft, M. Kristensen, J. Hubner, W. Xu and M. Bazylenko �??Poling of UV written waveguides,�?? in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.

Other (1)

Raman Kashyap, in Fiber Bragg Grating, edited by P.L.Kelly, J.Kaminow, G. P. Agrawal (Academic Press, London, 1999), 15

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Arrangement to measure the dc-Kerr and Electro-Optic effects. The gold electrode is shown in yellow and only covers the coiled region.

Fig. 2.
Fig. 2.

Output from ports 3 (open squares) and 4 (open circles) and their theoretical fits (lines).

Fig. 3.
Fig. 3.

(a) Output power at port 3 when an external field Eappl is applied in the waveguide. (b) The phase change due to Eappl. The open squares represent a quadrature point with the wavelength going “down”, while the open circles represent one going “up”. The dotted and solid lines are the parabolic fits to the curves going “up” and “down”, respectively.

Fig. 4.
Fig. 4.

(a) Average ηEdc vs. Epoling. (b) Average increase of χ(3) as a function of Epoling.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δn = 1 2 n 0 χ ( 3 ) ( E dc + E appl ) 2 = 1 2 n 0 χ ( 3 ) ( E dc 2 + 2 E dc E appl + E appl 2 )
P 3 P 2 = sin 2 ( κ 1 L 1 ) cos 2 ( κ 2 L 2 ) exp ( 2 α L A ) + cos 2 ( κ 1 L 1 ) sin 2 ( κ 2 L 2 ) exp ( 2 α L B )
+ 2 sin ( κ 1 L 1 ) sin ( κ 21 L 2 ) cos ( κ 1 L 1 ) cos ( κ 2 L 2 ) cos Δϕ exp [ α ( L A + L B ) ] ,
P 4 P 2 = sin 2 ( κ 1 L 1 ) sin 2 ( κ 2 L 2 ) exp ( 2 α L A ) + cos 2 ( κ 1 L 1 ) cos 2 ( κ 2 L 2 ) exp ( 2 α L B )
2 sin ( κ 1 L 1 ) sin ( κ 21 L 2 ) cos ( κ 1 L 1 ) cos ( κ 2 L 2 ) cos Δϕ exp [ α ( L A + L B ) ] ,
Δϕ = 2 π λ n ( L A L B ) .
ϕ A = π L A χ ( 3 ) λn ( E dc + E appl ) 2 = ϕ o + π L A χ ( 3 ) λn ( 2 E dc E appl + E appl 2 ) .
χ ind ( 2 ) = 3 2 χ ( 3 ) E dc ,
r = 2 χ ind ( 2 ) n 4 .

Metrics