Abstract

We detect acetylene and water-vapor lines by using a difference-frequency generator in the spectral region around 3 µm. Both C2H2 and H2O lines belong to fundamental vibrational bands and exhibit a line strength of the order of 10-20 cm/mol. Acetylene molecules were detected either by pure absorption or by first-derivative wavelength-modulation spectroscopy. The minimum detection sensitivity achieved for C2H2 in nitrogen was 4 ppb (parts in 109). Moreover, we discuss the effects of C2H2 pressure reduction in the presence of nitrogen in order to estimate systematic errors in the concentration measurements. Finally, we tested the accuracy of our spectrometer by detecting water vapor present as an impurity in a nitrogen cylinder at a nominal concentration of ≃5 ppm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
    [Crossref]
  2. F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).
  3. R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).
  4. H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
    [Crossref]
  5. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
    [Crossref]
  6. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
    [Crossref]
  7. D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
    [Crossref]
  8. M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
    [Crossref]
  9. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
    [Crossref]
  10. Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
    [Crossref]
  11. W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
    [Crossref]
  12. G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
    [Crossref]
  13. G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
    [Crossref]
  14. A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
    [Crossref]
  15. A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).
  16. R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
    [Crossref]
  17. J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
    [Crossref]
  18. G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc.191758 (1989).
  19. B. A. Williams and J. W. Fleming, “Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,” Appl. Phys. B 75, 883–890 (2002).
    [Crossref]
  20. W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
    [Crossref]
  21. F. S. Pavone and M. Inguscio “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
    [Crossref]
  22. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  23. USF HITRAN-PC Version 2.0 (University of South Florida, Tampa, Fla., 1992).
  24. M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
    [Crossref]
  25. B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley-Interscience, New-York, 1987), p. 65.

2003 (3)

G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
[Crossref]

G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
[Crossref]

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

2002 (6)

M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
[Crossref]

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

B. A. Williams and J. W. Fleming, “Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,” Appl. Phys. B 75, 883–890 (2002).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

2001 (2)

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

2000 (2)

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[Crossref]

J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[Crossref]

1999 (1)

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

1998 (3)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[Crossref]

1997 (1)

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

1993 (1)

F. S. Pavone and M. Inguscio “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1986 (1)

R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
[Crossref]

Aldén, M.

J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[Crossref]

Baillargeon, J. N.

Bengtsson, P. E.

J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[Crossref]

Bisson, S. E.

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

Bood, J.

J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[Crossref]

Boucher, B.

W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[Crossref]

Boucher, D.

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

Bruno, A.

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Capasso, F.

Chen, W.

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[Crossref]

Cho, A. Y.

Copeland, R. A.

G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc.191758 (1989).

Crosley, D. R.

G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc.191758 (1989).

Curl, R. F.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Dahnke, H.

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

Erdélyn, M.

M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
[Crossref]

Farrow, R. L.

R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley-Interscience, New-York, 1987), p. 65.

Fleming, J. W.

B. A. Williams and J. W. Fleming, “Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,” Appl. Phys. B 75, 883–890 (2002).
[Crossref]

Fried, A.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).

Geiser, P.

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

Gmachl, C.

Harren, F. J. M.

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

Hekkert, S. Te Lintel

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

Hering, P.

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

Hutchinson, A. L.

Inguscio, M.

F. S. Pavone and M. Inguscio “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Khorsandi, A.

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

Kleine, D.

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

Kosterev, A. A.

Lancaster, D. G.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Li, S.

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

Lucht, R. P.

R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Mcmanus, J. B.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

Melander, N.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Mine, Y.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Mouret, G.

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[Crossref]

Mürtz, M.

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

Neu, W.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

Palmer, R. E.

R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
[Crossref]

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

Pavone, F. S.

F. S. Pavone and M. Inguscio “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[Crossref]

Pesce, G.

G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
[Crossref]

G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
[Crossref]

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

Petrov, K. P.

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

Pitts, J. N.

B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley-Interscience, New-York, 1987), p. 65.

Raiche, G. A.

G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc.191758 (1989).

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).

Rusciano, G.

G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
[Crossref]

G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
[Crossref]

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

Sasso, A.

G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
[Crossref]

G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
[Crossref]

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

Schade, W.

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

Sivco, D. L.

Tittel, F. K.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
[Crossref]

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).

Van Herpen, M. M. J. W.

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[Crossref]

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Wilbring, P.

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

Willer, U.

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

Williams, B. A.

B. A. Williams and J. W. Fleming, “Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,” Appl. Phys. B 75, 883–890 (2002).
[Crossref]

Zahniser, M. S.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (12)

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[Crossref]

M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75, 329–333 (2002).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998).
[Crossref]

Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B 65, 771–774 (1997).
[Crossref]

W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, “Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,” Appl. Phys. B 72, 873–876 (2001).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

H. Dahnke, D. Kleine, P. Hering, and M. Mürtz “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
[Crossref]

J. Bood, P. E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[Crossref]

B. A. Williams and J. W. Fleming, “Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,” Appl. Phys. B 75, 883–890 (2002).
[Crossref]

W. Chen, G. Mouret, and B. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[Crossref]

F. S. Pavone and M. Inguscio “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[Crossref]

M. Erdélyn, D. Richter, and F. K. Tittel “13CO212CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys. B 75, 289–295 (2002).
[Crossref]

Chem. Phys. Lett. (1)

G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,” Chem. Phys. Lett. 374, 425–431 (2003).
[Crossref]

Combust. Sci. Technol. (1)

R. P. Lucht, R. L. Farrow, and R. E. Palmer, “Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,” Combust. Sci. Technol. 45, 261 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

IEEE Sensor J. (1)

G. Pesce, G. Rusciano, and A. Sasso “High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,” IEEE Sensor J. 3(2), 206–211 (2003).
[Crossref]

Iranian J. Phys. Res. (1)

A. Khorsandi, U. Willer, P. Geiser, and W. Schade, “MIR-difference frequency laser spectrometer for CO detection in combustions,” Iranian J. Phys. Res. 3, 4 (2003).

J. Anal. Chem. (1)

R. E. Neuhauser, U. Panne, R. Niessner, and P. Wilbring, “On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),” J. Anal. Chem. 364, 720–726 (1999).

Spectrochim. Acta Part A (2)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[Crossref]

A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of the ν1+ν3 band of N2O by difference-frequency spectrometer at 3 µm,” Spectrochim. Acta Part A 58, 2481–2488 (2002).
[Crossref]

Other (4)

F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).

G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc.191758 (1989).

USF HITRAN-PC Version 2.0 (University of South Florida, Tampa, Fla., 1992).

B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley-Interscience, New-York, 1987), p. 65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup: Ph, photodiode; M, mirror; BS, beam splitter; GF, germanium filter; L, lens; DM, dichroic filter; HWP, half-wave plate; QWP, quarter-wave plate; APP, anamorphic prism pair; OI, optical isolator; FP, Fabry-Perot.

Fig. 2.
Fig. 2.

Absorption profiles of the investigated R(25) acetylene line (~ν=3352.2871 cm-1) in the ν 3 band at different N2 pressures. The C2H2 pressure was kept constant at 350 nbar.

Fig. 3.
Fig. 3.

Experimental behavior of the homogeneous width (FWHM) of the R(25) C2H2 line in the ν 3 vibrational band. The line represents a linear fit of the experimental data.

Fig. 4.
Fig. 4.

First-derivative absorption signal of the R(25) acetylene line obtained in pure C2H2 samples at different pressures. The inset shows the absorption signal corresponding to ≃3.3 nbar.

Fig. 5.
Fig. 5.

SNR of the R(25) acetylene line as a function of the absorbing gas pressure. Error bars are within point sizes.

Fig. 6.
Fig. 6.

(a) Nominal concentration, C nom, (stars) and measured, C meas, concentration (dots) as a function of the total buffer gas pressure. (b) Difference C nom-C meas.

Fig. 7.
Fig. 7.

Experimental behavior of the area under the absorption lineshape as a function of the buffer gas pressure. A linear fit of the data is also shown.

Fig. 8.
Fig. 8.

First-derivative absorption signal of the R(25) acetylene line corresponding to a concentration of 32 ppb and a total pressure of 500 mbar. The effective bandwidth was ≃50 Hz.

Fig. 9.
Fig. 9.

(a) Absorption signal of the investigated H2O line at a nitrogen pressure of 10 mbar. Points, experimental data; continuous curve, Voigt profile fit. (b) Percentage residual between experimental data and the fitted Voigt profile.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 0 I ( L ) I 0 = 1 exp ( σ P C 2 H 2 L ) ,
C ( ppm ) = ln ( I 0 I ( L ) ) γ T π × 10 3 1.01325 × S ( T ) N L PL × 296 ,
S = 1.035 × 10 17 × σ γ D ,
C = P C 2 H 2 + a P N 2 + b ,
C = P C 2 H 2 0 α P N 2 P N 2 ,
A = A 0 β P N 2 ,
A A 0 = P C 2 H 2 P C 2 H 2 0 ,
α = β P C 2 H 2 0 A 0 .
C ( ppm ) = ln [ I 0 I ( L ) ] T × 10 3 1.01325 × S ( T ) [ β ( ln 2 ) 1 2 π 1 2 γ D + 1 β π γ L ] N L PL × 296 .

Metrics