Abstract

We report on the investigation of the thermo-optical behavior of air-clad ytterbium-doped large-mode-area photonic crystal fiber lasers. Analytical and numerical models are applied to calculate the heat distribution and induced stresses in a microstructured fiber. The results are compared to conventional double-clad fiber lasers and design guidelines are provided to ensure maximum heat dissipation and scalability to power levels of several kWs.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Platonov, V.P. Gapontsev, O. Shkurihin, and I. Zaitsev, �??400W low-noise single-mode CW Ytterbium fiber laser with an integrated fiber delivery,�?? in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2003), postdeadline paper CThPDB9.
  2. www.spioptics.com
  3. J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, �??500 W continuous-wave fibre laser with excellent beam quality,�?? Electron. Lett. 39, 8, 645 (2003).
    [CrossRef]
  4. A. Galvanauskas, �??Mode-scalable fiber-based chirped pulse amplification systems,�?? IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [CrossRef]
  5. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, �??High average power femtosecond fiber CPA system,�?? Opt. Lett. 28, 20, 1984 (2003).
    [CrossRef] [PubMed]
  6. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  7. W. J. Wadsworth, J.C. Knight, and P. St. J. Russell, �??Large mode area photonic crystal fibre laser,�?? in Conference on Lasers and Electro-Optics 2001, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWC1.
  8. K. Furusawa, A. Malinowski, J.H.V. Price, T.M. Monro, J.K. Sahu, J.Nilsson, and D.J. Richardson, �??Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,�?? Opt. Express 9, 714- 720 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714</a>.
    [CrossRef] [PubMed]
  9. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russell, "High power air-clad photonic crystal fibre laser," Opt. Express 11, 48-53 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-48.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-48</a>.
    [CrossRef] [PubMed]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a>.
    [CrossRef] [PubMed]
  11. W. Krause, Gerätekonstruktion, (Verlag Technik, Berlin, 1986)
  12. P.R. Yoder, Opto-mechanical systems design, (M. Dekker, New York, 1992)
  13. Finite Element Software ANSYS 6.1, http://www.ansys.com/

CLEO 2003

N. Platonov, V.P. Gapontsev, O. Shkurihin, and I. Zaitsev, �??400W low-noise single-mode CW Ytterbium fiber laser with an integrated fiber delivery,�?? in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2003), postdeadline paper CThPDB9.

Electron. Lett.

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, �??500 W continuous-wave fibre laser with excellent beam quality,�?? Electron. Lett. 39, 8, 645 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, �??Mode-scalable fiber-based chirped pulse amplification systems,�?? IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

OSA TOPS Series

W. J. Wadsworth, J.C. Knight, and P. St. J. Russell, �??Large mode area photonic crystal fibre laser,�?? in Conference on Lasers and Electro-Optics 2001, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWC1.

Other

W. Krause, Gerätekonstruktion, (Verlag Technik, Berlin, 1986)

P.R. Yoder, Opto-mechanical systems design, (M. Dekker, New York, 1992)

Finite Element Software ANSYS 6.1, http://www.ansys.com/

www.spioptics.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scanning electron microscope image of the air-clad ytterbium-doped large-mode-area fiber (PCF 1) and summarized specifications.

Fig. 2.
Fig. 2.

Microscope image of the air-clad PCF 2 and summarized specifications.

Fig. 3.
Fig. 3.

Laser characteristics of the high power air-clad microstructure ytterbium-doped largemode-area fiber.

Fig. 4.
Fig. 4.

Illustrated heat flow mechanisms in an air-clad microstructured fiber laser

Fig. 5.
Fig. 5.

Core to ambient air temperature difference (a) and core to fiber surface temperature difference (b) for PCF 1 and conventional DCF as a function of thermal load

Fig. 6.
Fig. 6.

Temperature profile of PCF 1 at 5 W/m thermal load calculated by FEM analysis. The values corresponding to each color represent the temperature difference in K to ambient air.

Fig. 7.
Fig. 7.

Distribution of radial stress in PCF 1 at 5 W/m thermal load calculated by FEM analysis. The stress values are given in GPa. Outside the bridges no significant radial stresses occur.

Fig. 8.
Fig. 8.

Core to ambient air temperature difference (a) and core to fiber surface temperature difference (b) for PCF 2 and conventional DCF as a function of thermal load

Tables (3)

Tables Icon

Table 1. Temperature-dependant coefficients for convective cooling in laminarly flowing air and water [11].

Tables Icon

Table 2. Calculated temperature distribution in PCF 1 in comparison to identical conventional double-clad fiber

Tables Icon

Table 3. Calculated temperature distribution in PCF 2 in comparison to identical conventional double-clad fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d Φ = α k · Δ T · d A ,
α k = C 1 · ( Δ T d ) 1 4 ,
d Φ = σ · ε · d A · ( T 1 4 T 2 4 ) ,
d Φ = k · d A ¯ L · Δ T = k π ( R 2 + R 1 ) · d R 2 R 1 · Δ T ,
d Φ = k · Number of bridges × Bridge width Bridge length · d · Δ T

Metrics