Abstract

We model the behavior of short and ultrashort laser pulses in high-finesse Fabry-Perot resonators, examining, in particular, the influence of cavity mirror reflectance and dispersion. The total coupling, peak power enhancement and temporal broadening of circulating pulses are characterized a function of the duration of the incident pulses.We show that there is an optimal input pulse duration which maximizes peak power for a given set of mirror characteristics.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, �??Laser phase and frequency stabilization using an optical resonator,�?? Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  2. R.J. Jones and J.-C. Diels, �??Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,�?? Phys. Rev. Lett. 86, 3288 (2001).
    [CrossRef] [PubMed]
  3. S. Link, H.A. D¨urr and W. Eberhardt, �??Femtosecond spectroscopy,�?? J. Phys.: Condens. Matter 13 7873-7884 (2001).
    [CrossRef]
  4. J.C. Petersen and A.N. Luiten, �??Resonant Polarization Interferometry with Ultrashort Laser Pulses,�?? Phys. Rev. A (in preparation).
  5. R.J. Jones and J. Ye, �??Femtosecond pulse amplification by coherent addition in a passive optical cavity,�?? Opt. Lett. 27, 1848 (2002)
    [CrossRef]
  6. T. Udem, J. Reichert, R. Holzwarth, M. Niering, M. Weitz and T.W. H¨ansch, �??Measuring the Frequency of Light with Mode-Locked Lasers,�?? in A.N. Luiten (Ed.), Frequency Measurement and Control, Topics Appl. Phys. 79 275 (Springer-Verlag, Berlin, 2001).
    [CrossRef]
  7. A.E. Siegman, Lasers (University Science Books, Sausalito, 1986).
  8. CVI Laser Corporation (www.cvilaser.com).
  9. F. Brunner et al, �??240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,�?? Opt. Lett. 27, 1162-1164 (2002).
    [CrossRef]
  10. T. Beddard et al, �??High-average-power, 1-MW peak-power self-mode-locked Ti:sapphire oscillator,�?? Opt. Lett. 24, 163-165 (1999).
    [CrossRef]

Appl. Phys. B

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, �??Laser phase and frequency stabilization using an optical resonator,�?? Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Phys.: Condens. Matter

S. Link, H.A. D¨urr and W. Eberhardt, �??Femtosecond spectroscopy,�?? J. Phys.: Condens. Matter 13 7873-7884 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J.C. Petersen and A.N. Luiten, �??Resonant Polarization Interferometry with Ultrashort Laser Pulses,�?? Phys. Rev. A (in preparation).

Phys. Rev. Lett.

R.J. Jones and J.-C. Diels, �??Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,�?? Phys. Rev. Lett. 86, 3288 (2001).
[CrossRef] [PubMed]

Topics Appl. Phys.

T. Udem, J. Reichert, R. Holzwarth, M. Niering, M. Weitz and T.W. H¨ansch, �??Measuring the Frequency of Light with Mode-Locked Lasers,�?? in A.N. Luiten (Ed.), Frequency Measurement and Control, Topics Appl. Phys. 79 275 (Springer-Verlag, Berlin, 2001).
[CrossRef]

Other

A.E. Siegman, Lasers (University Science Books, Sausalito, 1986).

CVI Laser Corporation (www.cvilaser.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Dispersive phase shift δϕ(Ω) on reflection from CVI LGVD ultrafast mirrors. (b) Calculated circulating phase ϕcirc (Ω). (c) Calculated power coupling efficiency β(Ω).

Fig. 2.
Fig. 2.

(a) Calculated power Pcirc (t) of the circulating pulse due to 20 fs Gaussian incident pulses. R=99.8%. A 37 fs Gaussian pulse (dashed) is shown for comparison. (b) Calculated circulating phase ϕcirc (t).

Fig. 3.
Fig. 3.

(a) Total power coupling efficiency βnet and relative pulse broadening τcircinc . (b) Peak circulating power Pmax (per µJ of energy per incident pulse).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( t ) = 2 τ log 2 π exp ( 2 log 2 t 2 τ 2 ) .
˜ ( Ω ) = τ 2 π log 2 exp ( Ω 2 τ 2 8 log 2 ) .
ν n = n c 2 L opt .
n λ = 2 ( L + Δ ϕ ( ω ) λ 2 π ) .
ν n = ( n δ ϕ ( ω ) π ϕ 0 π ) c 2 ( L + c ϕ 0 ) .
β ( Ω ) = P circ ( Ω ) F π P inc ( Ω ) .
h ( Ω ) = R exp ( i δ ϕ ( Ω ) )
˜ circ ( Ω ) = 1 R ˜ inc ( Ω ) ( 1 + h ( Ω ) 2 + h ( Ω ) 4 + )
= 1 R 1 h ( Ω ) 2 ˜ inc ( Ω )
= 1 R 1 R exp ( 2 i δ ϕ ( Ω ) ) ˜ inc ( Ω ) .
ϕ circ ( Ω ) = arg ( 1 1 R exp ( 2 i δ ϕ ( Ω ) ) ) ;
β ( Ω ) = ˜ circ ( Ω ) 2 F π ˜ inc ( Ω ) 2 = 1 R 1 R exp ( 2 i δ ϕ ( Ω ) ) 2 .
P circ ( t ) = circ ( t ) 2
ϕ circ ( t ) = arg ( circ ( t ) )
β net = β ( Ω ) P inc ( Ω ) d Ω = P circ ( Ω ) d Ω F π ,

Metrics