Abstract

We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of -110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, representing more than an order-of-magnitude improvement compared with previous OCT and interferometric imaging methods.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, �??Optical coherence- domain reflectometry: A new optical evaluation technique,�?? Opt. Lett., 12, 158-160 (1987).
    [CrossRef] [PubMed]
  3. K. Takada, I. Yokohama, K. Chida, and J. Noda, �??New measurement system for fault location in optical waveguide devices based on an interferometric technique,�?? Appl. Opt. 26, 1603-1606 (1987).
    [CrossRef]
  4. B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  6. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, �??High speed phase- and roup-delay scanning with a grating based phase control delay line,�?? Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  7. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3, 219-229 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  8. J. M. Schmitt, �??Optical coherence tomography (OCT): A review,�?? IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  9. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, �??Measurement f intraocular distances by backscattering spectral interferometry,�?? Opt. Commun. 117, 443-448 (1995).
    [CrossRef]
  10. G. Hausler and M. W. Lindner, �??Coherence Radar and Spectral Radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  11. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of courier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  12. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  13. E. Brinkmeyer and R. Ulrich, �??High-resolution OCDR in dispersive waveguide,�?? Electron. Lett. 26, 413-414 (1990).
    [CrossRef]
  14. S. R. Chinn, E. Swanson, J. G. Fujimoto, �??Optical coherence tomography using a frequency-tunable optical source,�?? Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  15. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, �??Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,�?? Opt. Lett. 22, 1704-1706 (1997).
    [CrossRef]
  16. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, �??Wavelength-tuning interferometry of intraocular distances,�?? Appl. Opt. 36, 6548-6553 (1997).
    [CrossRef]
  17. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, �??High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,�?? Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  18. W. V. Sorin, �??Optical reflectometry for component characterization�?? in Fiber optic test and measurement, D. Derickson, ed. (Hewlett Packard Company, Prentice Hall, New Jersey, 1998).
  19. J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms, and applications (Prentice-Hall, Inc., New Jersey, 1996).
  20. M. A. Choma, M. V. Sarunic, C. Uang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  21. K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, �??Rayleigh backscattering measurement of singlemode fibers by low coherence optical time-domain reflectometer with 14 m spatial resolution,�?? Appl. Phys. Lett. 59, 143-145 (1991).
    [CrossRef]
  22. W. V. Sorin and D. M. Baney, �??A simple intensity noise reduction technique for optical low-coherence reflectometry,�?? IEEE Photon. Technol. Lett. 4, 1404-1406 (1994).
    [CrossRef]
  23. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 106, 113-119 (2003).
    [CrossRef]

Appl. Opt (1)

K. Takada, I. Yokohama, K. Chida, and J. Noda, �??New measurement system for fault location in optical waveguide devices based on an interferometric technique,�?? Appl. Opt. 26, 1603-1606 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, �??Rayleigh backscattering measurement of singlemode fibers by low coherence optical time-domain reflectometer with 14 m spatial resolution,�?? Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Circulation (1)

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 106, 113-119 (2003).
[CrossRef]

Electron. Lett. (1)

E. Brinkmeyer and R. Ulrich, �??High-resolution OCDR in dispersive waveguide,�?? Electron. Lett. 26, 413-414 (1990).
[CrossRef]

Fiber optic test and measurement (1)

W. V. Sorin, �??Optical reflectometry for component characterization�?? in Fiber optic test and measurement, D. Derickson, ed. (Hewlett Packard Company, Prentice Hall, New Jersey, 1998).

IEEE J. Sel. Top. Quantum Electron (1)

J. M. Schmitt, �??Optical coherence tomography (OCT): A review,�?? IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. M. Baney, �??A simple intensity noise reduction technique for optical low-coherence reflectometry,�?? IEEE Photon. Technol. Lett. 4, 1404-1406 (1994).
[CrossRef]

J. Biomed. Opt (1)

G. Hausler and M. W. Lindner, �??Coherence Radar and Spectral Radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Opt. Commun (1)

F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, �??Measurement f intraocular distances by backscattering spectral interferometry,�?? Opt. Commun. 117, 443-448 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett (1)

R. C. Youngquist, S. Carr, and D. E. N. Davies, �??Optical coherence- domain reflectometry: A new optical evaluation technique,�?? Opt. Lett., 12, 158-160 (1987).
[CrossRef] [PubMed]

Opt. Lett. (5)

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).

J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms, and applications (Prentice-Hall, Inc., New Jersey, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Basic configuration of OFDR.

Fig. 2.
Fig. 2.

Experimental configuration of the optical frequency domain imaging system.

Fig. 3.
Fig. 3.

(a) Integrated output spectrum (solid, black) of the wavelength-swept laser operating at a sweep rate of 15.7 kHz, Gaussian fit of the integrated spectrum (dashed, black), and instantaneous spectrum (solid, red). (b) Laser intensity output as a function of time (three cycles).

Fig. 4.
Fig. 4.

(a) Interference signal for a weak reflector sample measured with dual balanced receiver, (b) background component measured by blocking the sample arm. The upper trace is the gating pulse train used for the data acquisition.

Fig. 5.
Fig. 5.

Sensitivity measured as a function of the reference-arm optical power (black dots) and the theoretical curve (green dashed line).

Fig. 6.
Fig. 6.

Sensitivity measured (a, black solid line) with a -55 dB partial reflector, (b, green solid line) with the sample arm blocked. (c, blue dashed line) and (d, red dash-dot line) are theoretical maximum sensitivity of hypothetical shot-noise limited frequency-domain and time-domain OCT with a detection bandwidth of 5 MHz.

Fig. 7.
Fig. 7.

(a) Image of a human finger (300 axial × 520 transverse pixels) acquired in vivo with the OFDI system at 30 fps. The vertical axis of this image contains 300 pixels and extends over a depth of 3.8 mm, where the horizontal axis of this image contains 520 pixels and extends over a transverse distance of 5.0 mm. (b) OCT image of the same human finger (250 axial × 500 transverse pixels, 2.5×5.0 mm) acquired at 4 fps using a state-of-the-art time-domain OCT system with a sensitivity of -110 dB. Despite of the 8 times faster imaging speed and lower source power, the OFDI image exhibits as large a penetration depth as the time-domain image. The scale bar represents 0.5 mm. Arrows in (a) mark axial locations of residual fixed pattern noise.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

i det ( t ) = η q h ν ( P r + P o r 2 ( z ) dz + 2 P r P o r ( z ) Γ ( z ) cos ( 2 k ( t ) z + ϕ ( z ) ) dz ) ,
δ z = 2 ln 2 π λ o 2 n Δ λ ,
Δ z = λ o 2 4 n δ λ ,
i s ( t ) = η q h ν · 2 P r P s cos ( 2 k ( t ) z 0 ) ,
i n 2 ( t ) = ( i th 2 + 2 η q 2 h ν ( P r + P s ) + ( η q h ν ) 2 RIN ( P r + P s ) 2 ) B W ,
F ( z l ) = m = 0 N s 1 i ( k m ) · exp j 2 π l m N s
( SNR ) FD = F s ( z 0 ) 2 F n 2 = N s 2 ( SNR ) TD ,
( SNR ) TD = i s 2 ( t ) i n 2 ( t )
( SNR ) FD η P s h ν f A ,
( SNR ) FD = N R ( SNR ) TD
Sensitivity [ d B ] = 10 log ( η P 0 h ν f A )
i s 2 ( t ) = ( η q h ν ) 2 2 2 p r p s cos ( k z ) 2 = 8 ( η q h ν ) 2 p r p s ,
i n 2 ( t ) = ( i qn 2 G 2 + i ex 2 G 2 + i th 2 + 2 η q 2 h ν 2 ( p r + p s ) + ( η q h ν ) 2 RIN { 2 ζ ( p r 2 + p s 2 ) + 2 2 p r p s } ) BW

Metrics