Abstract

We demonstrated a novel technique for low power optical limiting using self-diffraction in bacteriorhodopsin (bR) films. A cw Ar-Kr laser is used as the pump (input beam, 568 nm) and the output is the first order self-diffracted beam with an observed efficiency of about 0.01%. Input beam intensity is varied over three orders of magnitude in the range of milliwatt to watts per cm2 with output clamped at eye safe level of about 0.13 mW/cm2. Threshold intensity for limiting is governed by the saturation intensity of M-state of bR and hence can be varied by choosing films with different lifetimes.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical power limiting with photoinduced anisotropy of azobenzene films

Pengfei Wu, Reji Philip, Ramesh B. Laghumavarapu, Janakriam Devulapalli, Devulapalli V. G. L. N. Rao, Brian R. Kimball, Masato Nakashima, and Barry S. DeCristofano
Appl. Opt. 42(22) 4560-4565 (2003)

One-dimensional photonic crystal optical limiter

Boon Yi Soon, Joseph W. Haus, Michael Scalora, and Concita Sibilia
Opt. Express 11(17) 2007-2018 (2003)

Linear distributed Bragg cavity effects on optical limiting in two- and three-level media

James H. Andrews, Madeline Smotzer, Brandon Latronica, and Michael Crescimanno
J. Opt. Soc. Am. B 33(12) E102-E108 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Hollins, “Materials for Optical limiters,” Current opinion in Solid State and Material Science 4, 189–196 (1999).
    [Crossref]
  2. Y-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
    [Crossref]
  3. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23, 1742–1744 (1998).
    [Crossref]
  4. F. E. Hernandez, S. Yang, E. W. Van Stryland, and D. J. Hagan, “High Dynamic range casdaded-focus optical limiter,” Opt. Lett. 25, 1180–1182 (2000).
    [Crossref]
  5. Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
    [Crossref]
  6. American National Standard for Safe Use of Lasers ANSI Z136.1 – 2000. www.laserinstitute.org
  7. Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
    [Crossref]
  8. Michael E. DeRosa and Stephan L. Logunov, “Fiber-optic power limiter based on photothermal defocusing in an optical polymer,” Appl. Opt. 42, 2683 (2003).
    [Crossref] [PubMed]
  9. P. Wu, Reji Philip, R. B. Laghumavarapu, J. Devulapalli, D.V.G.L.N. Rao, B. Kimball, M. Nakashima, and B. S. DeCristafano, “Optical Power Limiting with Photoinduced Anisotropy of Azobenzene Films,” Appl. Opt. 42, 4560 (2003).
    [Crossref] [PubMed]
  10. George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
    [Crossref]
  11. Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).
  12. D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
    [Crossref]
  13. J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
    [Crossref]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2902 (1969).
  15. M. S. Malcuit, R.W. Boyd, L.W. Hillman, J. Krasinski, and C.R. Stroud Jr., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1, 73–75 (1984).
    [Crossref]
  16. Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
    [Crossref]

2003 (2)

2002 (1)

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

2001 (2)

Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
[Crossref]

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

2000 (1)

1999 (2)

R. C. Hollins, “Materials for Optical limiters,” Current opinion in Solid State and Material Science 4, 189–196 (1999).
[Crossref]

Y-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
[Crossref]

1998 (1)

1997 (1)

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

1996 (2)

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

1992 (1)

Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
[Crossref]

1984 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2902 (1969).

Akkara, J. A.

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

Aranda, F. J.

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

Birge, Robert R.

Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
[Crossref]

Boyd, R.W.

Chen, Z.

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

DeCristafano, B. S.

DeCristofano, B. S.

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

DeRosa, Michael E.

Devulapalli, J.

Dovgalenko, George E.

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

Gan, F. X.

Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
[Crossref]

Goh, S. H.

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Gross, Richard B.

Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
[Crossref]

Gu, Y. Z.

Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
[Crossref]

Hagan, D. J.

Hernandez, F. E.

Hillman, L.W.

Hollins, R. C.

R. C. Hollins, “Materials for Optical limiters,” Current opinion in Solid State and Material Science 4, 189–196 (1999).
[Crossref]

Huang, L.

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Izgi, K. Can

Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
[Crossref]

Jaaskelainen, T.

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Ji, W.

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Jin, Z.

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Joseph, Joby

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

Joshi, M. P.

Kannan, R.

Kaplan, D. L.

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

Kimball, B.

Klotz, Matthew

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2902 (1969).

Krasinski, J.

Laghumavarapu, R. B.

Lappanen, V. P.

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Liang, Z. J.

Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
[Crossref]

Logunov, Stephan L.

Malcuit, M. S.

Nakashima, M.

Nakashmia, M.

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

Parkkinen, J. P. S.

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Parkkinen, S.

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Philip, Reji

Prasad, P. N.

Rao, D. V. G. L. N.

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

Rao, D.V.G.L.N.

Reinhardt, B. A.

Riggs, J. E.

Y-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
[Crossref]

Salamo, Gregory J.

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

Stroud Jr., C.R.

Sun, Y-P.

Y-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
[Crossref]

Swiatkiewicz, J.

Van Stryland, E. W.

Vanhanen, J.

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Wood, Garry.L

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

Wu, P.

Xu, F.

Xu, G.

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Yang, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

George E. Dovgalenko, Matthew Klotz, Gregory J. Salamo, and Garry.L Wood “Optically induced birefringence in bacteriorhodospin as an optical limiter,” Appl. Phys. Lett. 68, 287–289 (1996).
[Crossref]

Bell Sys. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2902 (1969).

Chem. Phys. Lett. (1)

Z. Jin, L. Huang, S. H. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[Crossref]

Current opinion in Solid State and Material Science (1)

R. C. Hollins, “Materials for Optical limiters,” Current opinion in Solid State and Material Science 4, 189–196 (1999).
[Crossref]

Int. Rev. Phys. Chem. (1)

Y-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
[Crossref]

J. Nonlinear Opt. Phys. Mat. (1)

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan, and M. Nakashmia, “Nonlinear optical studies of Bacteriorhodopsin”, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Mat. (1)

Y. Z. Gu, Z. J. Liang, and F. X. Gan, “Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,” Opt. Mat. 17, 471 (2001).
[Crossref]

Opt. Mem. Neural Netw. (1)

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, “Optical Computing and Information Processing with a Protein Complex,” Opt. Mem. Neural Netw. 6, 275 (1997).

Opt. Rev. (1)

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Grating Formation in 13-demethyl Bacteriorhodopsin Film,” Opt. Rev. 8, 368 (2001).
[Crossref]

Proc. SPIE (1)

Richard B. Gross, K. Can Izgi, and Robert R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” Proc. SPIE 1662, Image Storage and Retrieval Systems, 186–196 (1992).
[Crossref]

Other (1)

American National Standard for Safe Use of Lasers ANSI Z136.1 – 2000. www.laserinstitute.org

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of bR photocycle. The numbers after the letter symbols for the intermediate states indicate the absorption maxima in nm. (b) Absorption spectra of bR film

Fig. 2.
Fig. 2.

Schematic of the experimental setup used to observe the optical limiting behavior in the self-diffraction signal where BS: beam splitter, M1, M2, M3 – mirrors, bR – Bacteriorhodopsin film, ND – Neutral density filter.

Fig. 3.
Fig. 3.

Theoretical fit (solid line) using the equation 2 to the experimental data (open circles)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = exp ( 2 d α 0 cos θ ) { sin 2 ( π d n 1 λ cos θ ) + sinh 2 ( d α 1 2 cos θ ) }
η nl = exp ( 2 d α 0 cos θ ) { d 2 [ π 2 n 10 2 + ( λ α 10 2 ) 2 ] 4 λ 2 cos 2 θ } [ I s ( I in + I s ) ]
n 10 ( λ ) = n M ( λ ) n B ( λ ) = ln ( 10 ) 2 π 2 d P . V . 0 [ A M ( λ ) A B ( λ ) ] 1 ( λ λ ) 2 d λ
α 10 ( λ ) = α M ( λ ) α B ( λ ) = ln ( 10 ) d [ A M ( λ ) A B ( λ ) ]

Metrics