Abstract

We demonstrated a novel technique for low power optical limiting using self-diffraction in bacteriorhodopsin (bR) films. A cw Ar-Kr laser is used as the pump (input beam, 568 nm) and the output is the first order self-diffracted beam with an observed efficiency of about 0.01%. Input beam intensity is varied over three orders of magnitude in the range of milliwatt to watts per cm2 with output clamped at eye safe level of about 0.13 mW/cm2. Threshold intensity for limiting is governed by the saturation intensity of M-state of bR and hence can be varied by choosing films with different lifetimes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. C. Hollins, �??Materials for Optical limiters,�?? Current opinion in Solid State and Material Science 4, 189-196 (1999).
    [CrossRef]
  2. Y-P. Sun and J. E. Riggs, �??Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,�?? Int. Rev. Phys. Chem. 18, 43-90 (1999).
    [CrossRef]
  3. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, �??Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,�?? Opt. Lett. 23, 1742-1744 (1998).
    [CrossRef]
  4. F. E. Hernandez, S. Yang, E. W. Van Stryland, and D. J. Hagan, �??High Dynamic range casdaded-focus optical limiter,�?? Opt. Lett. 25, 1180-1182 (2000).
    [CrossRef]
  5. Z. Jin, L. Huang, S. H. Goh, G. Xu and W. Ji, �??Size-dependent optical limiting behavior of multi-walled carbon nanotubes,�?? Chem. Phys. Lett. 352, 328-333 (2002).
    [CrossRef]
  6. American National Standard for Safe Use of Lasers ANSI Z136.1 �?? 2000. <a href="www.laserinstitute.org">www.laserinstitute.org</a>
  7. Y. Z. Gu, Z. J. Liang, and F. X. Gan, �??Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,�?? Opt. Mat. 17, 471 (2001).
    [CrossRef]
  8. Michael E. DeRosa, and Stephan L. Logunov, �??Fiber-optic power limiter based on photothermal defocusing in an optical polymer,�?? Appl. Opt. 42, 2683 (2003).
    [CrossRef] [PubMed]
  9. P. Wu, Reji Philip, R. B. Laghumavarapu, J. Devulapalli, D. V. G. L. N. Rao, B. Kimball, M. Nakashima, and B. S. DeCristafano, �??Optical Power Limiting with Photoinduced Anisotropy of Azobenzene Films,�?? Appl. Opt. 42, 4560 (2003).
    [CrossRef] [PubMed]
  10. George E. Dovgalenko, Matthew Klotz, and Gregory J. Salamo, Garry L.Wood �??Optically induced birefringence in bacteriorhodospin as an optical limiter,�?? Appl. Phys. Lett. 68, 287-289 (1996).
    [CrossRef]
  11. Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, �??Optical Computing and Information Processing with a Protein Complex,�?? Opt. Mem. Neural Netw. 6, 275 (1997).
  12. D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan and M. Nakashmia, �??Nonlinear optical studies of Bacteriorhodopsin�??, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
    [CrossRef]
  13. J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen and J. P. S. Parkkinen, �??Grating Formation in 13-demethyl Bacteriorhodopsin Film,�?? Opt. Rev. 8, 368 (2001).
    [CrossRef]
  14. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Sys. Tech. J. 48, 2902 (1969).
  15. M. S. Malcuit, R.W. Boyd, L.W. Hillman, J. Krasinski and Jr. C.R. Stroud, �??Saturation and inverse-saturation absorption line shapes in alexandrite,�?? J. Opt. Soc. Am. B 1, 73-75 (1984).
    [CrossRef]
  16. Richard B. Gross, K. Can Izgi and Robert R. Birge, �??Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,�?? Proc. SPIE 1662, Image Storage and Retrieval Systems, 186-196 (1992).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

George E. Dovgalenko, Matthew Klotz, and Gregory J. Salamo, Garry L.Wood �??Optically induced birefringence in bacteriorhodospin as an optical limiter,�?? Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Bell Sys. Tech. J. (1)

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Sys. Tech. J. 48, 2902 (1969).

Chem. Phys. Lett. (1)

Z. Jin, L. Huang, S. H. Goh, G. Xu and W. Ji, �??Size-dependent optical limiting behavior of multi-walled carbon nanotubes,�?? Chem. Phys. Lett. 352, 328-333 (2002).
[CrossRef]

Current opinion in Sol. St. and Mat. Sci (1)

R. C. Hollins, �??Materials for Optical limiters,�?? Current opinion in Solid State and Material Science 4, 189-196 (1999).
[CrossRef]

Int. Rev. Phys. Chem. (1)

Y-P. Sun and J. E. Riggs, �??Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,�?? Int. Rev. Phys. Chem. 18, 43-90 (1999).
[CrossRef]

J. Nonlinear Opt. Phys. Mat. (1)

D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan and M. Nakashmia, �??Nonlinear optical studies of Bacteriorhodopsin�??, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Mat. (1)

Y. Z. Gu, Z. J. Liang, and F. X. Gan, �??Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,�?? Opt. Mat. 17, 471 (2001).
[CrossRef]

Opt. Mem. Neural Netw. (1)

Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, �??Optical Computing and Information Processing with a Protein Complex,�?? Opt. Mem. Neural Netw. 6, 275 (1997).

Opt. Rev. (1)

J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen and J. P. S. Parkkinen, �??Grating Formation in 13-demethyl Bacteriorhodopsin Film,�?? Opt. Rev. 8, 368 (2001).
[CrossRef]

Proc. SPIE (1)

Richard B. Gross, K. Can Izgi and Robert R. Birge, �??Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,�?? Proc. SPIE 1662, Image Storage and Retrieval Systems, 186-196 (1992).
[CrossRef]

Other (1)

American National Standard for Safe Use of Lasers ANSI Z136.1 �?? 2000. <a href="www.laserinstitute.org">www.laserinstitute.org</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of bR photocycle. The numbers after the letter symbols for the intermediate states indicate the absorption maxima in nm. (b) Absorption spectra of bR film

Fig. 2.
Fig. 2.

Schematic of the experimental setup used to observe the optical limiting behavior in the self-diffraction signal where BS: beam splitter, M1, M2, M3 – mirrors, bR – Bacteriorhodopsin film, ND – Neutral density filter.

Fig. 3.
Fig. 3.

Theoretical fit (solid line) using the equation 2 to the experimental data (open circles)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = exp ( 2 d α 0 cos θ ) { sin 2 ( π d n 1 λ cos θ ) + sinh 2 ( d α 1 2 cos θ ) }
η nl = exp ( 2 d α 0 cos θ ) { d 2 [ π 2 n 10 2 + ( λ α 10 2 ) 2 ] 4 λ 2 cos 2 θ } [ I s ( I in + I s ) ]
n 10 ( λ ) = n M ( λ ) n B ( λ ) = ln ( 10 ) 2 π 2 d P . V . 0 [ A M ( λ ) A B ( λ ) ] 1 ( λ λ ) 2 d λ
α 10 ( λ ) = α M ( λ ) α B ( λ ) = ln ( 10 ) d [ A M ( λ ) A B ( λ ) ]

Metrics