Abstract

We extend earlier work on two-electron photo-ionization to analyze electron momentum. We provide theoretical evidence distinguishing two categories of e-e trajectory associated with the correlation that develops when an “outer” electron returns to the nucleus in the presence of a high-intensity optical-wavelength laser field. We use the method of back-analysis to connect these two categories of trajectory with NSDI events having either nearly zero (Z) or substantially non-zero (NZ) total electron momentum.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Double ionization in a one-cycle laser pulse

Martin Dörr
Opt. Express 6(5) 111-116 (2000)

Directional correlation in direct and sequential double ionization of model atoms

S.L. Haan, N. Hoekema, S. Poniatowski, W.-C. Liu, and J.H. Eberly
Opt. Express 7(1) 29-38 (2000)

Phase-space analysis of double ionization

Manfred Lein, Volker Engel, and E. K. U. Gross
Opt. Express 8(7) 411-416 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Fittinghoffet al., “Observatifon of nonsequential double ionization of Helium with optical tunneling,” Phys. Rev. Lett. 69, 2642 (1992).
    [Crossref] [PubMed]
  2. B. Walkeret al., “Precision measurement of strong field double ionization,” Phys. Rev. Lett. 73, 1227 (1994).
    [Crossref] [PubMed]
  3. B. Sheehyet al., “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942 (1998).
    [Crossref]
  4. Th. Weberet al., “Correlated electron emission in multiphoton double ionization,” Nature (London)  405, 658 (2000).
    [Crossref] [PubMed]
  5. M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).
  6. K. J. Schaferet al., “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
    [Crossref] [PubMed]
  7. Baorui Yanget al., “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770 (1993).
    [Crossref] [PubMed]
  8. K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).
  9. J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
    [Crossref] [PubMed]
  10. R. Grobe and J.H. Eberly, “Photoelectron spectra for a two-electron system in a strong laser field,” Phys. Rev. Lett. 68, 2905–2908 (1992).
    [Crossref] [PubMed]
  11. W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
    [Crossref]
  12. See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
    [Crossref] [PubMed]
  13. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).
    [Crossref] [PubMed]
  14. H. W. van der Hart and K. Burnett, “Recollision model for double ionization of atoms in strong laser fields,” Phys. Rev. A 62, 013407 (2000).
    [Crossref]
  15. U. Eichmannet al., “Collective multielectron tunneling ionization in strong fields,” Phys. Rev. Lett. 84, 3550 (2000).
    [Crossref] [PubMed]
  16. B. Feuersteinet al., “Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
    [Crossref] [PubMed]
  17. A. Becker and F.H.M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546 (2000).
    [Crossref] [PubMed]
  18. R. Kopoldet al., “Routes to nonsequential double ionization,” Phys. Rev. Lett. 853781 (2000).
    [Crossref] [PubMed]
  19. S. P. Goreslavski and S. V. Popruzhenko, “Nonsequential double ionization: a quasiclassical analysis of the Keldysh-type transition amplitude,” Opt. Express 8, 395 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-395.
    [Crossref] [PubMed]
  20. Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
    [Crossref]
  21. A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742 (1999).
    [Crossref]
  22. Th. Weberet al., “Recoil-ion momentum distributionsfor single and double ionization of Helium in strong laser fields,” Phys. Rev. Lett. 84, 443(2000).
    [Crossref] [PubMed]
  23. Th. Weberet al., “Sequential and nonsequential contributions to double ionization in strong laser fields,” J. Phys. B 33, L127(2000).
    [Crossref]
  24. R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
    [Crossref] [PubMed]
  25. S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
    [Crossref]
  26. R. Panfili and J. H. Eberly, “Comparing classical and quantum dynamics of strong-field double ionization,” Opt. Express 8, 431 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-431.
    [Crossref]
  27. H.W. van der Hart, “Sequential versus non-sequential double ionization in strong laser fields,” J. Phys. B 33, L699 (2000).
    [Crossref]
  28. P.J. Ho and J.H. Eberly, in preparation.

2003 (1)

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

2002 (3)

Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
[Crossref]

R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
[Crossref] [PubMed]

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

2001 (2)

S. P. Goreslavski and S. V. Popruzhenko, “Nonsequential double ionization: a quasiclassical analysis of the Keldysh-type transition amplitude,” Opt. Express 8, 395 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-395.
[Crossref] [PubMed]

B. Feuersteinet al., “Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref] [PubMed]

2000 (8)

A. Becker and F.H.M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546 (2000).
[Crossref] [PubMed]

R. Kopoldet al., “Routes to nonsequential double ionization,” Phys. Rev. Lett. 853781 (2000).
[Crossref] [PubMed]

H. W. van der Hart and K. Burnett, “Recollision model for double ionization of atoms in strong laser fields,” Phys. Rev. A 62, 013407 (2000).
[Crossref]

U. Eichmannet al., “Collective multielectron tunneling ionization in strong fields,” Phys. Rev. Lett. 84, 3550 (2000).
[Crossref] [PubMed]

Th. Weberet al., “Correlated electron emission in multiphoton double ionization,” Nature (London)  405, 658 (2000).
[Crossref] [PubMed]

H.W. van der Hart, “Sequential versus non-sequential double ionization in strong laser fields,” J. Phys. B 33, L699 (2000).
[Crossref]

Th. Weberet al., “Recoil-ion momentum distributionsfor single and double ionization of Helium in strong laser fields,” Phys. Rev. Lett. 84, 443(2000).
[Crossref] [PubMed]

Th. Weberet al., “Sequential and nonsequential contributions to double ionization in strong laser fields,” J. Phys. B 33, L127(2000).
[Crossref]

1999 (2)

A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742 (1999).
[Crossref]

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

1998 (2)

1994 (1)

B. Walkeret al., “Precision measurement of strong field double ionization,” Phys. Rev. Lett. 73, 1227 (1994).
[Crossref] [PubMed]

1993 (4)

K. J. Schaferet al., “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

Baorui Yanget al., “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770 (1993).
[Crossref] [PubMed]

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).
[Crossref] [PubMed]

1992 (2)

R. Grobe and J.H. Eberly, “Photoelectron spectra for a two-electron system in a strong laser field,” Phys. Rev. Lett. 68, 2905–2908 (1992).
[Crossref] [PubMed]

D. N. Fittinghoffet al., “Observatifon of nonsequential double ionization of Helium with optical tunneling,” Phys. Rev. Lett. 69, 2642 (1992).
[Crossref] [PubMed]

1988 (1)

J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Becker, A.

A. Becker and F.H.M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546 (2000).
[Crossref] [PubMed]

A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742 (1999).
[Crossref]

Burnett, K.

H. W. van der Hart and K. Burnett, “Recollision model for double ionization of atoms in strong laser fields,” Phys. Rev. A 62, 013407 (2000).
[Crossref]

Chen, Shi-Gang

Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).
[Crossref] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

DiMauro, L. F.

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

Dundas, D.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

Eberly, J. H.

R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
[Crossref] [PubMed]

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

R. Panfili and J. H. Eberly, “Comparing classical and quantum dynamics of strong-field double ionization,” Opt. Express 8, 431 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-431.
[Crossref]

Eberly, J.H.

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

R. Grobe and J.H. Eberly, “Photoelectron spectra for a two-electron system in a strong laser field,” Phys. Rev. Lett. 68, 2905–2908 (1992).
[Crossref] [PubMed]

J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

P.J. Ho and J.H. Eberly, in preparation.

Eichmann, U.

U. Eichmannet al., “Collective multielectron tunneling ionization in strong fields,” Phys. Rev. Lett. 84, 3550 (2000).
[Crossref] [PubMed]

Faisal, F. H. M.

A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742 (1999).
[Crossref]

Faisal, F.H.M.

A. Becker and F.H.M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546 (2000).
[Crossref] [PubMed]

Feuerstein, B.

B. Feuersteinet al., “Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref] [PubMed]

Fittinghoff, D. N.

D. N. Fittinghoffet al., “Observatifon of nonsequential double ionization of Helium with optical tunneling,” Phys. Rev. Lett. 69, 2642 (1992).
[Crossref] [PubMed]

Fu, Li-Bin

Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
[Crossref]

Goreslavski, S. P.

Grobe, R.

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

R. Grobe and J.H. Eberly, “Photoelectron spectra for a two-electron system in a strong laser field,” Phys. Rev. Lett. 68, 2905–2908 (1992).
[Crossref] [PubMed]

Haan, S. L.

R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
[Crossref] [PubMed]

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

Haan, S.L.

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

Ho, P.J.

P.J. Ho and J.H. Eberly, in preparation.

Javanainen, J.

J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Kopold, R.

R. Kopoldet al., “Routes to nonsequential double ionization,” Phys. Rev. Lett. 853781 (2000).
[Crossref] [PubMed]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Kulander, K. C.

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

Liu, Jie

Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
[Crossref]

Liu, W. -C.

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

McCann, J.F.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

Meharg, K.J.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

Moore, L.R.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

Panfili, R.

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
[Crossref] [PubMed]

R. Panfili and J. H. Eberly, “Comparing classical and quantum dynamics of strong-field double ionization,” Opt. Express 8, 431 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-431.
[Crossref]

Parker, J.S.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

Popruzhenko, S. V.

Schafer, K. J.

K. J. Schaferet al., “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

Sheehy, B.

B. Sheehyet al., “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942 (1998).
[Crossref]

Su, Q.

J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Taylor, K. T.

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

van der Hart, H. W.

H. W. van der Hart and K. Burnett, “Recollision model for double ionization of atoms in strong laser fields,” Phys. Rev. A 62, 013407 (2000).
[Crossref]

van der Hart, H.W.

H.W. van der Hart, “Sequential versus non-sequential double ionization in strong laser fields,” J. Phys. B 33, L699 (2000).
[Crossref]

Walker, B.

B. Walkeret al., “Precision measurement of strong field double ionization,” Phys. Rev. Lett. 73, 1227 (1994).
[Crossref] [PubMed]

Weber, Th.

Th. Weberet al., “Correlated electron emission in multiphoton double ionization,” Nature (London)  405, 658 (2000).
[Crossref] [PubMed]

Th. Weberet al., “Recoil-ion momentum distributionsfor single and double ionization of Helium in strong laser fields,” Phys. Rev. Lett. 84, 443(2000).
[Crossref] [PubMed]

Th. Weberet al., “Sequential and nonsequential contributions to double ionization in strong laser fields,” J. Phys. B 33, L127(2000).
[Crossref]

Wheeler, P.S.

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

Yang, Baorui

Baorui Yanget al., “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770 (1993).
[Crossref] [PubMed]

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

J. Mod. Optics (1)

K. T. Taylor, J.S. Parker, D. Dundas, K.J. Meharg, L.R. Moore, and J.F. McCann, “Laser-driven helium, H2+ and H2,” J. Mod. Optics 50, 401 (2003).

J. Phys. B (2)

Th. Weberet al., “Sequential and nonsequential contributions to double ionization in strong laser fields,” J. Phys. B 33, L127(2000).
[Crossref]

H.W. van der Hart, “Sequential versus non-sequential double ionization in strong laser fields,” J. Phys. B 33, L699 (2000).
[Crossref]

Nature (1)

Th. Weberet al., “Correlated electron emission in multiphoton double ionization,” Nature (London)  405, 658 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (6)

B. Sheehyet al., “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942 (1998).
[Crossref]

S.L. Haan, P.S. Wheeler, R. Panfili, and J.H. Eberly, “Origin of correlated electron eission in double ionization of atoms,” Phys. Rev. A 66, 061402 (2002).
[Crossref]

Li-Bin Fu, Jie Liu, and Shi-Gang Chen, “Correlated electron emission in laser-induced nonsequential double ionization of Helium,” Phys. Rev. A 65, RC021406 (2002).
[Crossref]

A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742 (1999).
[Crossref]

H. W. van der Hart and K. Burnett, “Recollision model for double ionization of atoms in strong laser fields,” Phys. Rev. A 62, 013407 (2000).
[Crossref]

J. Javanainen, J.H. Eberly, and Q. Su, “Numerical simulations of multiphoton ionization and above-threshold electron spectra,” Phys. Rev. A 38, 3430–3446 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (14)

R. Grobe and J.H. Eberly, “Photoelectron spectra for a two-electron system in a strong laser field,” Phys. Rev. Lett. 68, 2905–2908 (1992).
[Crossref] [PubMed]

W. -C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, “Correlation effects in two-electron model atoms in intense laser fields,” Phys. Rev. Lett. 83, 520 (1999).
[Crossref]

See K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).
[Crossref] [PubMed]

D. N. Fittinghoffet al., “Observatifon of nonsequential double ionization of Helium with optical tunneling,” Phys. Rev. Lett. 69, 2642 (1992).
[Crossref] [PubMed]

B. Walkeret al., “Precision measurement of strong field double ionization,” Phys. Rev. Lett. 73, 1227 (1994).
[Crossref] [PubMed]

U. Eichmannet al., “Collective multielectron tunneling ionization in strong fields,” Phys. Rev. Lett. 84, 3550 (2000).
[Crossref] [PubMed]

B. Feuersteinet al., “Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: the role of excitation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).
[Crossref] [PubMed]

A. Becker and F.H.M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546 (2000).
[Crossref] [PubMed]

R. Kopoldet al., “Routes to nonsequential double ionization,” Phys. Rev. Lett. 853781 (2000).
[Crossref] [PubMed]

Th. Weberet al., “Recoil-ion momentum distributionsfor single and double ionization of Helium in strong laser fields,” Phys. Rev. Lett. 84, 443(2000).
[Crossref] [PubMed]

R. Panfili, S. L. Haan, and J. H. Eberly, “Slow-down collisions and nonsequential double ionization in classical simulations,” Phys. Rev. Lett. 89, 113001 (2002).
[Crossref] [PubMed]

K. J. Schaferet al., “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
[Crossref] [PubMed]

Baorui Yanget al., “Intensity-dependent scattering rings in high order above-threshold ionization,” Phys. Rev. Lett. 71, 3770 (1993).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Other (1)

P.J. Ho and J.H. Eberly, in preparation.

Supplementary Material (2)

» Media 1: MOV (1978 KB)     
» Media 2: MOV (1971 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

On the left, two-electron NSDI trajectory points are shown in coordinate space at the end of the third cycle of the pulse. The clusters beyond 5 a.u. in the first quadrant make up the jets in NSDI, and we label each quadrant with either Z or NZ according to whether the total momentum is approximately zero or non-zero. On the right, the panel shows the final total momentum distribution of all trajectories. The green and red boxes separate the Z and NZ regions respectively. In particular, the arrows in the Z and NZ regions pinpoint the total momenta of two different trajectories that will be examined.

Fig. 2.
Fig. 2.

Evolution of a trajectory whose final position is near the outer edge of an NSDI jet. The left panel shows the trajectory in position space, both the details near the coordinate origin during the interval 3.1–4.0 cycles and, in the small inset, over a wider range of positions. The red dot marks the final point at 8 cycles. Note that the scales of these two plots are different. (1.9 MB) The right panel is a single frame from the animation that shows the time development of energy and position from 3.1 to 4.0 cycles, leading to NSDI.

Fig. 3.
Fig. 3.

Evolution of a non-jet NSDI trajectory. The large and small plots in the left panel show the time development of the two electrons in position space, during the animation time (3.4–4.3 cycles) and over the entire laser pulse respectively. The red dot indicates the final position of the two electrons at 8c. Note that the scale of these two plots are different. (1.9 MB) The right panel is a frame from the animation that shows the outer electron revisiting the core with high kinetic energy. The animation illustrates the time development of energy and position of two electrons from 3.4 to 4.3 cycles, leading to category Z NSDI.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H = p 1 2 2 + p 2 2 2 Z V ( x 1 ) Z V ( x 2 ) + V ( x 1 x 2 ) + ( x 1 + x 2 ) E ( t ) ,

Metrics