Abstract

We present an all solid state, transportable photoacoustic spectrometer for highly sensitive mid-infrared trace gas detection. A complete spectral coverage between 3.1 and 3.9 µm is obtained using a PPLN-based continuous-wave optical parametric oscillator pumped by a Nd:YAG laser at 1064 nm. A low threshold is achieved by resonating the pump, and spectral agility by employing a dual-cavity setup. An etalon suppresses mode-hops. Active signal cavity stabilization yields a frequency stability better than ±30 MHz over 45 minutes. Output idler power is 2×100 mW. The frequency tuning qualities of the OPO allow reliable scan over gas absorption structures. A detection limit of 110 ppt for ethane is achieved.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. F. Elstner and J. R. Konze, �??Effects of point freezing on ethylene and ethane production by sugar beet leaf disks,�?? Nature, 263 351-352 (1976).
    [CrossRef]
  2. M. D. Knutson, G. J. Handelman, and F. E. Viteri, �??Methods for measuring ethane and pentane in expired air from rats and humans,�?? Free Radical Biology & Medicine. 28 514-519 (2000).
    [CrossRef] [PubMed]
  3. F. Kühnemann, �??Photoacoustic trace gas detection in plant biology�?? in Laser in environmental and life science, P. Hering, J. P. Lay, and S. Stry, ed. (Springer, Heidelberg-Berlin, 2003), Chap. 16.
  4. D. Richter, D. G. Lancaster, F. K. Tittel, �??Development of an automated diode-laser-based multicomponent gas sensor,�?? Appl. Opt. 39 4444-4450 (2000).
    [CrossRef]
  5. K.Schneider, P. Kramper, S .Schiller, and J. Mlynek, �??Toward an optical synthesizer: a singlefrequency parametric oscillator using periodically poled LiNbO3 ,�?? Opt. Lett. 22 1293-1295 (1997).
    [CrossRef]
  6. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, �??Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,�?? Appl. Phys. B 66 741-745 (1998).
    [CrossRef]
  7. M. M. J. W. v. Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, �??Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,�?? Appl. Phys. B 75 329-333 (2002).
    [CrossRef]
  8. A. Popp, F. Müller, S. Schiller, G. v. Basum, H. Dahnke, P. Hering, M. Mürtz, and F. Kühnemann, �??Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator,�?? Appl. Phys. B 75 751-754 (2002).
    [CrossRef]
  9. G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, �??Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator,�?? Opt. Lett. 25 341-343 (2000).
    [CrossRef]
  10. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, �??Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3 ,�?? Opt. Lett. 21 591-593 (1996).
    [CrossRef] [PubMed]
  11. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, �??Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,�?? Appl. Phys. Lett. 77 2494-2496 (2000).
    [CrossRef]
  12. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31 97�??105 (1983).
    [CrossRef]
  13. HITRAN data base, URL:<A HREF="http://cfa-www.harvard.edu/HITRAN/">http://cfa-www.harvard.edu/HITRAN/</A>.

Appl. Opt.

Appl. Phys. B

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, �??Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,�?? Appl. Phys. B 66 741-745 (1998).
[CrossRef]

M. M. J. W. v. Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, �??Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,�?? Appl. Phys. B 75 329-333 (2002).
[CrossRef]

A. Popp, F. Müller, S. Schiller, G. v. Basum, H. Dahnke, P. Hering, M. Mürtz, and F. Kühnemann, �??Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator,�?? Appl. Phys. B 75 751-754 (2002).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31 97�??105 (1983).
[CrossRef]

Appl. Phys. Lett.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, �??Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,�?? Appl. Phys. Lett. 77 2494-2496 (2000).
[CrossRef]

Free Radical Biology & Medicine

M. D. Knutson, G. J. Handelman, and F. E. Viteri, �??Methods for measuring ethane and pentane in expired air from rats and humans,�?? Free Radical Biology & Medicine. 28 514-519 (2000).
[CrossRef] [PubMed]

Nature

E. F. Elstner and J. R. Konze, �??Effects of point freezing on ethylene and ethane production by sugar beet leaf disks,�?? Nature, 263 351-352 (1976).
[CrossRef]

Opt. Lett

K.Schneider, P. Kramper, S .Schiller, and J. Mlynek, �??Toward an optical synthesizer: a singlefrequency parametric oscillator using periodically poled LiNbO3 ,�?? Opt. Lett. 22 1293-1295 (1997).
[CrossRef]

G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, �??Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator,�?? Opt. Lett. 25 341-343 (2000).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, �??Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3 ,�?? Opt. Lett. 21 591-593 (1996).
[CrossRef] [PubMed]

Other

F. Kühnemann, �??Photoacoustic trace gas detection in plant biology�?? in Laser in environmental and life science, P. Hering, J. P. Lay, and S. Stry, ed. (Springer, Heidelberg-Berlin, 2003), Chap. 16.

HITRAN data base, URL:<A HREF="http://cfa-www.harvard.edu/HITRAN/">http://cfa-www.harvard.edu/HITRAN/</A>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the linear dual-cavity cw-PR-SRO setup, including servos.

Fig. 2.
Fig. 2.

(a) Single-side idler output power measured after a beamsplitter versus incident pump power (with fit according to theory [5]). (b) Frequency stability (digital wavemeter read-out and interpolation) with stabilized signal-cavity.

Fig. 3.
Fig. 3.

Modehop tuning by turning the 0.5 mm etalon. Idler frequency (top) and idler power (bottom) as a function of etalon angle α.

Fig. 4.
Fig. 4.

(a) Fine tuning of idler frequency over one FSR of signal cavity by changing the signal cavity length. The discrete frequency values are due to the finite resolution of the wavemeter. Fine tuning (b) by tuning of the pump laser over 1.5 GHz.

Fig. 5.
Fig. 5.

(a) The OPO based photoacoustic spectrometer. (b) Screen shot of one feature of the LABVIEW (®) computer control program, comparing the current idler frequency with a gas absorption structure from a database.

Fig. 6.
Fig. 6.

(a) Scan over an ethane absorption peak (atmospheric pressure, ethane concentration 1ppm) using the small PAC. (b) 2 cm-1 wide scan over an ethylene absorption peak (atmospheric pressure, ethylene concentration 635 ppb) and the spectral background using the large PAC. Both scans performed with 450 MHz etalon mode hop tuning.

Metrics